Controlling of Food Borne Pathogens by Nanoparticles

  • S. RajeshkumarEmail author
  • L. V. Bharath


Food borne diseases remain a major cause of lots of diseases and death in the universal population, particularly in susceptible groups. These diseases originate from either the toxin of the microbes which cause disease. There are hundreds of bacteria, viruses, toxins, parasites, prions and metals are together with food borne diseases in human beings, which are mainly patented as gastroenteritis (acute). The different types of nanoparticles such as zinc oxide, gold, silver etc. are used for the controlling of food borne disease causing pathogens. In this book chapter we have discussed about nanoparticles and its characterization and mechanism of action on food borne disease causing microorganisms.


Food Nanoparticles Food borne pathogens Mechanism 


  1. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRefGoogle Scholar
  2. Ahamed M, Khan MAM, Akhtar MJ et al (2016) Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells. Sci Rep 6(30196)Google Scholar
  3. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28PubMedCrossRefGoogle Scholar
  4. Alaqad K, Saleh TA (2016) Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J Environ Anal Toxicol 6Google Scholar
  5. Aleaghil SA, Fattahy E, Baei B, et al (2016) Antibacterial activity of zinc oxide nanoparticles on Staphylococcus aureus ABSTRACT : INTRODUCTION : 1569–1575Google Scholar
  6. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333PubMedPubMedCentralCrossRefGoogle Scholar
  7. Altekruse SF, Stern NJ, Fields PI, Swerdlow DL (1999) Campylobacter jejuni--an emerging foodborne pathogen. Emerg Infect Dis 5:28–35PubMedPubMedCentralCrossRefGoogle Scholar
  8. Alvarado JA, Maldonado A, Juarez H, Pacio M (2013) Synthesis of colloidal ZnO nanoparticles and deposit of thin films by spin coating technique. J Nanomater 2013:1–9CrossRefGoogle Scholar
  9. Andersson A, Rönner U, Granum PE (1995) What problems does the food industry have with the spore-forming pathogens Bacillus Cereus and Clostridium Perfringens? Int J Food Microbiol 28:145–155PubMedCrossRefGoogle Scholar
  10. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753–763PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ashkarran AA, Iraji zad A, Mahdavi SM, Ahadian MM (2009) ZnO nanoparticles prepared by electrical arc discharge method in waterGoogle Scholar
  12. Augustine AK, Nampoori VPN, Kailasnath M (2014) Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. Opt – Int J Light Electron Opt 125:6696–6699CrossRefGoogle Scholar
  13. Azam A, Ahmed O et al (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine:6003Google Scholar
  14. Bagamadova AM, Omaev AK (2015) Gas-phase synthesis of zinc oxide nanorods. Tech Phys Lett 41:874–876CrossRefGoogle Scholar
  15. Behera SS, Patra JK, Pramanik K et al (2012) Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J Nano. Sci Eng 2:196–200Google Scholar
  16. Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8:1–16PubMedCrossRefGoogle Scholar
  17. Bolden NW, Rangari VK, Jeelani S et al (2013) Synthesis and evaluation of magnetic nanoparticles for biomedical applications. J Nanoparticles 2013:1–9CrossRefGoogle Scholar
  18. Borkow G, Gabbay J (2004) Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J 18:1728–1730PubMedCrossRefGoogle Scholar
  19. Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters-a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol Ecol 77:186–199PubMedCrossRefGoogle Scholar
  20. Carré G, Hamon E, Ennahar S et al (2014) TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80:2573–2581PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carter N (2015) Physical Properties of Iron Oxide Nanoparticles, vol 17, pp 1–11Google Scholar
  22. Chieng BW, Loo YY (2012) Synthesis of ZnO nanoparticles by modified polyol methodCrossRefGoogle Scholar
  23. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191:235–237CrossRefGoogle Scholar
  24. Choi J, Park S, Stojanović Z et al (2013) Facile Solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin–gold nanoclusters. Langmuir 29:15698–15703PubMedCrossRefGoogle Scholar
  25. Chow EHH, Strobridge FC, Friščić T et al (2010) Mechanochemistry of magnesium oxide revisited: facile derivatisation of pharmaceuticals using coordination and supramolecular chemistry. Chem Commun 46:6368CrossRefGoogle Scholar
  26. Cui Y, Zhao Y, Tian Y et al (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333PubMedCrossRefGoogle Scholar
  27. Damiani LR, Mansano RD (2012) Zinc oxide thin films deposited by magnetron sputtering with various oxygen/argon concentrations. J Phys Conf Ser 370:12019. CrossRefGoogle Scholar
  28. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surfaces B Biointerfaces 101:430–433PubMedCrossRefGoogle Scholar
  29. Dizaj SM, Lotfipour F, Barzegar-Jalali M et al (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284CrossRefGoogle Scholar
  30. Dong S, Tang C, Zhou H, Zhao H (2004) Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach. Gold Bull 37:187–195CrossRefGoogle Scholar
  31. Dorobantu LS, Fallone C, Noble AJ et al (2015) Toxicity of silver nanoparticles against bacteria, yeast, and algae. J Nanopart Res 17Google Scholar
  32. Dung Dang TM, Tuyet Le TT, Fribourg-Blanc E, Dang MC (2012) Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol 3:35004CrossRefGoogle Scholar
  33. Elfick A, Rischitor G, Mouras R et al (2017) Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6. Sci Rep 7:39755PubMedPubMedCentralCrossRefGoogle Scholar
  34. Espinosa A, Di Corato R, Kolosnjaj-Tabi J et al (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and Photothermal bimodal treatment. ACS Nano 10:2436–2446PubMedCrossRefGoogle Scholar
  35. Hasany SF, Abdurahman NH, Sunarti AR, Jose R (2013) Magnetic Iron Oxide Nanoparticles: Chemical Synthesis and Applications Review. Current nanoscience 9(5):561–575CrossRefGoogle Scholar
  36. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511PubMedPubMedCentralGoogle Scholar
  37. Fatemeh.B.F MM (2011) Reduction of listeria monocytogenes and Bacillus Cereus in milk by zinc oxide nanoparticles. Iran J Pathol 124:3945–3952Google Scholar
  38. Fatima H, Kim K-S (2017) Magnetic nanoparticles for bioseparation. Korean J Chem Eng 34:589–599CrossRefGoogle Scholar
  39. Fayer R (2004) Sarcocystis of humans. In: Opportunistic infections: toxoplasma, sarcocystis, and microsporidia. Springer US, Boston, pp 111–121CrossRefGoogle Scholar
  40. Fray DJ, Chen GZ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in moltencalcium chloride. Nature 407:361–364PubMedCrossRefGoogle Scholar
  41. Fowsiya J, Madhumitha G (2017) Preliminary phytochemical analysis, Antioxidant and cytotoxicity test of Carissa edulis Vahl dried fruits . IOP Conf Series: Mater Sci Eng 263:022018CrossRefGoogle Scholar
  42. de Freitas JC, Branco RM, Lisboa IGO et al (2015) Magnetic nanoparticles obtained by homogeneous Coprecipitation Sonochemically assisted. Mater Res 18:220–224CrossRefGoogle Scholar
  43. FRENS G, G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRefGoogle Scholar
  44. Fumitaka Mafuné, Jun-ya Kohno, Yoshihiro Takeda and, et al (2000) Formation and size control of silver nanoparticles by Laser Ablation in Aqueous SolutionGoogle Scholar
  45. Gao J, Xu M (2007) Metal Nanopaticles of various Shapes, pp 1–19Google Scholar
  46. García S, Heredia N (2011) Clostridium Perfringens: a dynamic foodborne pathogen. Food Bioprocess Technol 4:624–630CrossRefGoogle Scholar
  47. Ge S, Shi X, Sun K et al (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599CrossRefGoogle Scholar
  48. George SA, Raj MS, Solomon D, Roselin P (2014) A comparative study of the anti-fungal activity of zinc oxide and titanium dioxide nano and bulk particles with anti-fungals against fungi isolated from infected skin and dandruff flakes, vol 3, pp 23–30Google Scholar
  49. Ghorbani HR, Safekordi AA, Attar H, Sorkhabadi SMR (2011) Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q J 25:317–326Google Scholar
  50. Gupta SK, Desai R, Jha PK et al (2010) Titanium dioxide synthesized using titanium chloride: Size effect study using Raman and Photoluminescence. J Raman Spectrosc 41(3):350–355Google Scholar
  51. Gurav AS, Kodas TT, Wang L-M et al (1994) Generation of nanometer-size fullerene particles via vapor condensation. Chem Phys Lett 218:304–308CrossRefGoogle Scholar
  52. Haghighi F, Mohammadi SR, Mohammadi P et al (2012) The evaluation of Candida Albicans biofilms formation on silicone catheter, PVC and glass coated with titanium dioxide nanoparticles by XTT method and ATPase assay. Bratisl Lek Listy 113:707–711PubMedGoogle Scholar
  53. Hajipour MJ, Fromm KM, Akbar Ashkarran A et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511PubMedCrossRefGoogle Scholar
  54. Hasanzadeh M, Shadjou N, de la Guardia M (2015) Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal Chem 72:1–9CrossRefGoogle Scholar
  55. He B, Tan JJ, Liew KY, Liu H (2004) Synthesis of size controlled ag nanoparticles. J Mol Catal A Chem 221:121–126CrossRefGoogle Scholar
  56. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215PubMedCrossRefGoogle Scholar
  57. He Y, Ingudam S, Reed S et al (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnology 14:54PubMedPubMedCentralCrossRefGoogle Scholar
  58. Herizchi R, Abbasi E, Milani M, Akbarzadeh A (2016) Current methods for synthesis of gold nanoparticles. Artif Cells, Nanomedicine, Biotechnol 44:596–602CrossRefGoogle Scholar
  59. Heshmat M, Abdizadeh H, Golobostanfard MR (2015) Sonochemical assisted synthesis of ZnO nanostructured thin films prepared by sol-gel method. Procedia Mater Sci 11:486–490CrossRefGoogle Scholar
  60. Hirakawa K, Mori M, Yoshida M et al (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38:439–447PubMedCrossRefGoogle Scholar
  61. Hosseinkhani P, Zand AM, Imani S et al (2011) Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int J Nano Dimens 1:279–285Google Scholar
  62. Hussain JI, Kumar S, Hashmi AA, Khan Z (2011) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mater Lett 2:188–194CrossRefGoogle Scholar
  63. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014a) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406PubMedPubMedCentralGoogle Scholar
  64. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014b) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406PubMedPubMedCentralGoogle Scholar
  65. Ismail RA, Ali AK, Ismail MM, Hassoon KI (2011) Preparation and characterization of colloidal ZnO nanoparticles using nanosecond laser ablation in water. Appl Nanosci 1:45–49CrossRefGoogle Scholar
  66. Ismail RA, Sulaiman GM, Abdulrahman SA, Marzoog TR (2015a) Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater Sci Eng C 53:286–297CrossRefGoogle Scholar
  67. Ismail RA, Sulaiman GM, Abdulrahman SA, Marzoog TR (2015b) Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater Sci Eng C 53:286–297CrossRefGoogle Scholar
  68. J. Kimling, M. Maier, B. Okenve, et al (2006) Turkevich Method for Gold Nanoparticle Synthesis RevisitedGoogle Scholar
  69. Jasim NO (2015) Antifungal Activity of Zinc Oxide Nanoparticles on Aspergillus Fumigatus Fungus & Candida Albicans Yeast 5:23–28Google Scholar
  70. Jay JM (2000) Foodborne gastroenteritis caused by Salmonella and Shigella. In: Modern food nicrobiology. Springer US, Boston, pp 511–530CrossRefGoogle Scholar
  71. Jemmi T, Stephan R (2006) Listeria monocytogenes: food-borne pathogen and hygiene indicator. Rev Sci Tech 25:571–580PubMedCrossRefGoogle Scholar
  72. Jin T, Sun D, JY S et al (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52PubMedCrossRefGoogle Scholar
  73. Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia Coli. Nat Rev Microbiol 2:123–140PubMedCrossRefGoogle Scholar
  74. Kazakevich PV, Voronov VV, Simakin AV, Shafeev GA (2004) Production of copper and brass nanoparticles upon laser ablation in liquids. Quantum Electron 34:951–956CrossRefGoogle Scholar
  75. Kedziora A, Strek W, Kepinski L et al (2012) Synthesis and antibacterial activity of novel titanium dioxide doped with silver. J Sol-Gel Sci Technol 62:79–86CrossRefGoogle Scholar
  76. Khan MF, Ansari AH, Hameedullah M et al (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep 6(27689)Google Scholar
  77. Khodashenas B, Ghorbani HR (2014) Synthesis of copper nanoparticles: an overview of the various methods. Korean J Chem Eng 31:1105–1109CrossRefGoogle Scholar
  78. Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17:4019–4024PubMedCrossRefGoogle Scholar
  79. Kim JS, Kuk E, KN Y et al (2007a) Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnology, Biol Med 3:95–101CrossRefGoogle Scholar
  80. Kim JS, Kuk E, KN Y et al (2007b) Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnology, Biol Med 3:95–101CrossRefGoogle Scholar
  81. Koupaei MH, Shareghi B, Saboury AA et al (2016) Green synthesis of zinc oxide nanoparticles and their effect on the stability and activity of proteinase K. RSC Adv 6:42313–42323CrossRefGoogle Scholar
  82. Kretusheva IV, Mishin MV, Aleksandrov SE (2014) Synthesis of silicon dioxide nanoparticles in low temperature atmospheric pressure plasma. Russ J Appl Chem 87:1581–1586CrossRefGoogle Scholar
  83. Ks M, Ek E, Patel TN, Murty VR (2011) Catharanthus roseus : a natural source for the synthesis of silver nanoparticles. 270–274Google Scholar
  84. La Bella G, Martella V, Basanisi MG et al (2017) Food-borne viruses in shellfish: investigation on norovirus and HAV presence in Apulia (SE Italy). Food Environ Virol 9:179–186PubMedCrossRefGoogle Scholar
  85. Lai D, Liu T, Jiang G, Chen W (2012) Synthesis of highly stable dispersions of copper nanoparticles using sodium hypophosphite. J Appl Polym Sci 128:n/a-n/aGoogle Scholar
  86. Laudon M, Romanowicz BF, Nano Science and Technology Institute, TechConnect World (2011 : Boston M (2011) Nanotech Conference & Expo 2011 : technical proceedings of the 2011 NSTI Nanotechnology Conference and Expo : June 13–16, 2011, Boston, MA, U.S.A. Nano Science and Technology InstituteGoogle Scholar
  87. Lee H-H, Chou K-S, Huang K-C (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16:2436–2441PubMedCrossRefGoogle Scholar
  88. Lee SC, Billmyre RB, Li A et al (2014) Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. MBio 5:e01390–14PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lee SD, Sang-Hun Nam, Myoung-Hwa Kim, et al (2010) Synthesis of ZnO nanoparticles by spray-pyrolysis method and their photocatalytic effect. In: 2010 3rd International Nanoelectronics Conference (INEC) IEEE, pp 572–573Google Scholar
  90. Lengke MF, Sanpawanitchakit C, Southam G (2011) Biosynthesis of gold nanoparticles: a review. Met Nanoparticles Microbiol:37–74Google Scholar
  91. Letchumanan V, Chan K-G, Lee L-H (2014) Vibrio Parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 5(705)Google Scholar
  92. Leung YH, Ng AMC, Xu X et al (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183PubMedCrossRefGoogle Scholar
  93. Li J, Wu Q, Wu J (2015) Synthesis of nanoparticles via Solvothermal and hydrothermal methods. In: Handbook of Nanoparticles. Springer International Publishing, Cham, pp 1–28Google Scholar
  94. Li V, Homan Z, Bhargava SK, Bansal V (2005) Shape-controlled synthesis and antimicrobial, pp 1–10Google Scholar
  95. Li WR, Xie XB, Shi QS et al (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122PubMedCrossRefGoogle Scholar
  96. Lim JY, Yoon J, Hovde CJ (2010) A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20:5–14PubMedPubMedCentralGoogle Scholar
  97. Lima E, Guerra R, Lara V, Guzmán A (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 7:11PubMedPubMedCentralCrossRefGoogle Scholar
  98. Liz-Marzán LM (2013) Gold nanoparticle research before and after the Brust-Schiffrin method. Chem Commun (Camb) 49:16–18CrossRefGoogle Scholar
  99. Logrieco A, Bottalico A, Mulé G et al (2003) Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur J Plant Pathol 109:645–667CrossRefGoogle Scholar
  100. Loharikar A, Briere E, Schwensohn C et al (2012) Four multistate outbreaks of human salmonella infections associated with live poultry contact, United States, 2009. Zoonoses Public Health 59:347–354PubMedCrossRefGoogle Scholar
  101. Lokina S, Narayanan V (2013) Antimicrobial and anticancer activity of gold nanoparticles synthesized from grapes fruit extract. Chem Sci Trans 2Google Scholar
  102. Luechinger NA, Athanassiou EK, Stark WJ (2008) Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19:445201PubMedCrossRefGoogle Scholar
  103. Madhumitha G, Rajakumar G, Roopan SM et al (2012) Acaricidal, insecticidal, and larvicidal efficacy of fruit peel aqueous extract of Annona squamosa and its compounds against blood-feeding parasites. Parasitol Res 111 (5):2189–2199PubMedPubMedCentralCrossRefGoogle Scholar
  104. Madhumitha G, Elango G, Roopan SM (2016) Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. App Microbiol Biotechnol 100 (2):571–581PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mantzaris NV (2005) Liquid-phase synthesis of nanoparticles: particle size distribution dynamics and control. Chem Eng Sci 60:4749–4770CrossRefGoogle Scholar
  106. Mattioli G, Amore Bonapasta A, Bovi D, Giannozzi P (2014) Photocatalytic and photovoltaic properties of TiO 2 nanoparticles investigated by ab initio simulations. J Phys Chem C 118:29928–29942CrossRefGoogle Scholar
  107. Mirhosseini M, Firouzabadi FB (2013) Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int J Dairy Technol 66:291–295CrossRefGoogle Scholar
  108. Misra N, Biswal J, Gupta A et al (2012) Gamma radiation induced synthesis of gold nanoparticles in aqueous polyvinyl pyrrolidone solution and its application for hydrogen peroxide estimation. Radiat Phys Chem 81:195–200CrossRefGoogle Scholar
  109. Mlalila NG, Swai HS, Hilonga A, Kadam DM (2017) Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol Sci Appl 10:1–9PubMedCrossRefGoogle Scholar
  110. Mogal SI, Gandhi VG, Mishra M et al (2014) Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties. Ind Eng Chem Res 53:5749–5758CrossRefGoogle Scholar
  111. Mukherjee A, Chatopadhyay S, Chawla-Sarkar M (2012) Rotavirus infection in India: a major cause of childhood gastroenteritis. Proc Natl Acad Sci India Sect B Biol Sci 82:135–151CrossRefGoogle Scholar
  112. Mukherjee A, Mohammed Sadiq I, Prathna TC, Chandrasekaran N (2011) Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. Sci against Microb Pathog Commun Curr Res Technol Adv:245–251Google Scholar
  113. Naik R, Kroll E, Rodak D et al (2004) Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix. J Magn Magn Mater 272:E1239–E1241CrossRefGoogle Scholar
  114. Naqvi S, Naqvi M, Samim M et al (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983PubMedPubMedCentralCrossRefGoogle Scholar
  115. Naveed Ul Haq A, Nadhman A, Ullah I et al (2017) Synthesis approaches of zinc oxide nanoparticles: the dilemma of Ecotoxicity. J Nanomater 2017:1–14CrossRefGoogle Scholar
  116. Newell DG, Koopmans M, Verhoef L et al (2010) Food-borne diseases — the challenges of 20years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15PubMedCrossRefGoogle Scholar
  117. Nguyen VQ, Ishihara M, Mori Y et al (2013) Preparation of size-controlled silver nanoparticles and chitin-based composites and their antimicrobial activities. J Nanomater 2013:1Google Scholar
  118. Nsi (2012) Nanotechnology for sensors and sensors for nanotechnology: improving and protecting health, safety, and the environment. Nanotechnol Signat Initiat:1–11Google Scholar
  119. O’Mahony M, Mitchell E, Gilbert RJ et al (1990) An outbreak of foodborne botulism associated with contaminated hazelnut yoghurt. Epidemiol Infect 104:389–395PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ostaeva GY, Selishcheva ED, Pautov VD, Papisov IM (2008) Pseudotemplate synthesis of copper nanoparticles in solutions of poly(acrylic acid)-pluronic blends. Polym Sci Ser B 50:147–149CrossRefGoogle Scholar
  121. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:35004CrossRefGoogle Scholar
  122. Paper C, Technology N (2016) Hydrothermal Synthesis of Magnesium Oxide Nanoparticles from Dolomite and . . .Google Scholar
  123. Park BK, Jeong S, Kim D et al (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424PubMedCrossRefGoogle Scholar
  124. Park YK, Tadd EH, Zubris M, Tannenbaum R (2005) Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides. Mater Res Bull 40:1506–1512CrossRefGoogle Scholar
  125. Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: Their advantages and disadvantages, vol 20048, p 20048Google Scholar
  126. Patil RS, Kokate MR, Jambhale CL et al (2012) One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application. Adv Nat Sci Nanosci Nanotechnol 3(15013)Google Scholar
  127. Patra JK, Baek K-H (2014) Green Nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:1–12CrossRefGoogle Scholar
  128. Podrezova LV, Porro S, Cauda V et al (2013) Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Appl Phys A Mater Sci Process 113:623–632CrossRefGoogle Scholar
  129. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(32)Google Scholar
  130. Pulit-Prociak J, Banach M (2016) Silver nanoparticles - a material of the future...? Open Chem 14:76–91CrossRefGoogle Scholar
  131. Radhakrishnan S, Gajivaradhan P (2014) Journal of chemical, biological and physical. Sciences 4:474–479Google Scholar
  132. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852PubMedCrossRefGoogle Scholar
  133. Ramanathan R, Field MR, O’Mullane AP et al (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5(6):2300PubMedCrossRefGoogle Scholar
  134. Rao P, Chandraprasad MS, Yn L et al (2014) Biosynthesis of silver nanoparticles using lemon extract and its antibacterial activity. Int J Multidiscip. Curr Res 2:165–169Google Scholar
  135. Raza M, Kanwal Z, Rauf A et al (2016) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nano 6:74Google Scholar
  136. Razouk RI, Mikhail RS (1958) The hydration of magnesium oxide from the vapor phase. J Phys Chem 62:920–925CrossRefGoogle Scholar
  137. Reddy KM, Feris K, Bell J et al (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:2139021–2139023PubMedGoogle Scholar
  138. Roberta Brayner, Roselyne Ferrari-Iliou, Nicolas Brivois et al (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal mediumGoogle Scholar
  139. Rodríguez-León E, Iñiguez-Palomares R, Navarro RE et al (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex Hymenosepalus extracts). Nanoscale Res Lett 8:318PubMedPubMedCentralCrossRefGoogle Scholar
  140. Roopan SM, Khan FNR (2010) ZnO nanoparticles in the synthesis of AB ring core of camptothecin. Chem Paper 64 (6): 812–817Google Scholar
  141. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:1–30. 36CrossRefGoogle Scholar
  142. S. Roy A, Parveen A, R. Koppalkar A, Prasad MVNA (2010) Effect of Nano - titanium dioxide with different antibiotics against methicillin-resistant staphylococcus aureus. J Biomater Nanobiotechnol 1:37–41Google Scholar
  143. Sadiq IM, Chowdhury B, Chandrasekaran N et al (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine 5:282–286PubMedCrossRefGoogle Scholar
  144. Saikova SV, Vorob’ev SA, Nikolaeva RB, Mikhlin YL (2010) Conditions for the formation of copper nanoparticles by reduction of copper(II) ions with hydrazine hydrate solutions. Russ J Gen Chem 80:1122–1127CrossRefGoogle Scholar
  145. Salah N, Habib SS, Khan ZH et al (2011) High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int J Nanomedicine 6:863–869PubMedPubMedCentralCrossRefGoogle Scholar
  146. Sánchez G (2013) Hepatitis a virus in food : detection and inactivation methods. SpringerCrossRefGoogle Scholar
  147. Scharfe S, Fässler TF, Eychmüller A et al (2010) Syntheses and characterizations. In: Nanoparticles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 49–310CrossRefGoogle Scholar
  148. Schmid G (2010) General Introduction. In: Nanoparticles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–2CrossRefGoogle Scholar
  149. Shamaila S, Zafar N, Riaz S et al (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nano 6:71Google Scholar
  150. Shrivastava S, Bera T, Roy A et al (2010) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:1–9Google Scholar
  151. Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci 284:521–526PubMedCrossRefGoogle Scholar
  152. Smith KA (2012) Louis pasteur, the father of immunology? Front Immunol 3(68)Google Scholar
  153. Springer B, Orendi U, Much P et al (2009) Methicillin-resistant Staphylococcus Aureus: a new zoonotic agent? Wien Klin Wochenschr 121:86–90PubMedCrossRefGoogle Scholar
  154. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  155. Streit E, Schatzmayr G, Tassis P et al (2012) Current situation of mycotoxin contamination and co-occurrence in animal feed–focus on Europe. Toxins (Basel) 4:788–809CrossRefGoogle Scholar
  156. Sun K, Chang Y, Zhou B et al (2017) Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor. Int J Nanomedicine 12:1905–1915PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Sci (Washington, DC, United States) 298:2176–2179Google Scholar
  158. Tayel AA, El-Tras WF, Moussa S et al (2011) Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Saf 31:211–218CrossRefGoogle Scholar
  159. Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45CrossRefGoogle Scholar
  160. Thahirakhatoon U, Nageswararao GVS, Mohan MK (2013) Synthesis and characterization of copper nanoparticles by chemical reduction method. 24–27Google Scholar
  161. Thippareddi H, Subbiah J, Korasapati NR, Sanchez-Plata MX (2009) Predictive modeling of pathogen growth in cooked meats. In: Safety of Meat and processed Meat Springer New York, New York, NY, pp 559–590CrossRefGoogle Scholar
  162. Tiwari PM, Vig K, Dennis V a., Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nano 1:31–63PubMedPubMedCentralCrossRefGoogle Scholar
  163. Toulemon D, Pichon BP, Leuvrey C et al (2013) Fast assembling of magnetic iron oxide nanoparticles by microwave-assisted copper(I) catalyzed alkyne–Azide cycloaddition (CuAAC). Chem Mater 25:2849–2854CrossRefGoogle Scholar
  164. Tudzynski P, Düvell A, Oeser B (1986) Linear plasmids in the Phytopathogenic fungus Claviceps Purpurea. In: Extrachromosomal elements in lower eukaryotes. Springer US, Boston, pp 119–127CrossRefGoogle Scholar
  165. Uhm YR, Han BS, Lee MK et al (2007) Synthesis and characterization of nanoparticles of ZnO by levitational gas condensation. Mater Sci Eng A 449:813–816CrossRefGoogle Scholar
  166. Ullattil SG, Periyat P (2017) Sol-gel synthesis of titanium dioxide. Springer International Publishing:271–283Google Scholar
  167. Umer A, Naveed S, Ramzan N et al (2014) A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria (Rio Janeiro) 19:197–203CrossRefGoogle Scholar
  168. Ungur G, Hrůza J (2015) Influence of copper oxide on the formation of polyurethane nanofibers via electrospinning. Fibers Polym 16:621–628CrossRefGoogle Scholar
  169. Usman MS, Ibrahim NA, Shameli K et al (2012) Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules 17:14928–14936PubMedCrossRefGoogle Scholar
  170. Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM 62:102–104CrossRefGoogle Scholar
  171. von Nussbaum F, Brands M, Hinzen B et al (2006) Antibacterial natural products in medicinal chemistry—exodus or revival? Angew Chemie Int Ed 45:5072–5129CrossRefGoogle Scholar
  172. Wagacha JM, Muthomi JW (2008) Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies. Int J Food Microbiol 124:1–12PubMedCrossRefGoogle Scholar
  173. Wahab R, Ansari SG, Dar MA et al (2007) Synthesis of magnesium oxide nanoparticles by sol-gel process. Mater Sci Forum 558–559:983–986CrossRefGoogle Scholar
  174. WAKUDA D, KIM K, SUGANUMA K (2008) Room temperature sintering of ag nanoparticles by drying solvent. Scr Mater 59:649–652CrossRefGoogle Scholar
  175. Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloids Surfaces A Physicochem Eng Asp 256:111–115CrossRefGoogle Scholar
  176. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wang S, Lu W, Tovmachenko O et al (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463:145–149PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wender H, Andreazza ML, Correia RRB et al (2011) Synthesis of gold nanoparticles by laser ablation of an au foil inside and outside ionic liquids. Nanoscale 3:1240PubMedCrossRefGoogle Scholar
  179. Wiegand I, Hilpert K, Hancock REW et al (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175PubMedCrossRefGoogle Scholar
  180. Williams JD, Sefton AM (1999) The prevention of antibiotic resistance during treatment. Infection 27:S29–S31PubMedCrossRefGoogle Scholar
  181. Wing EJ, Gregory SH (2002) Listeria monocytogenes: Clinical and Experimental Update. J Infect Dis 185:S18–S24PubMedCrossRefGoogle Scholar
  182. Wu W, Wu Z, Yu T et al (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(23501):023501PubMedPubMedCentralCrossRefGoogle Scholar
  183. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chemie – Int Ed 48:60–103CrossRefGoogle Scholar
  184. Xie Y, He Y, Irwin PL et al (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microbiol 77:2325–2331PubMedPubMedCentralCrossRefGoogle Scholar
  185. Yang L, Cao Z, Sajja HK et al (2008) Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol 4:439–449PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yi Ding, Guangtao Zhang, Hao Wu, et al (2001) Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesisGoogle Scholar
  187. Yıldırım ÖA, Durucan C (2010) Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J Alloys Compd 506:944–949CrossRefGoogle Scholar
  188. Yugo DM, Meng X-J (2013) Hepatitis E virus: foodborne, waterborne and zoonotic transmission. Int J Environ Res Public Health 10:4507–4533PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zarei M, Jamnejad A, Khajehali E (2014) Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J Microbiol 7:e8720PubMedPubMedCentralGoogle Scholar
  190. Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids – a potential antibacterial agent. Prog Nat Sci 18:939–944. CrossRefGoogle Scholar
  191. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534PubMedCentralCrossRefGoogle Scholar
  192. Zhou Y, Kong Y, Kundu S et al (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnology 10:19PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zielińska A, Skwarek E, Zaleska A et al (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1:1560–1566CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Scientist, Nanotherapy Lab, School of Bio-Sciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations