Advertisement

Co-infection with HIV

  • Margriet den Boer
  • Jorge Alvar
Chapter

Abstract

This chapter describes the epidemiology, current spread, and clinical aspects of HIV/Leishmania co-infection and highlights the recently released guidelines of WHO on their management. It discusses the development of resistant Leishmania strains for existing anti-Leishmania drugs and the complexity of chemotherapy for Leishmania/HIV co-infection, which relies on the same drugs that are used in uncomplicated Leishmania. Additionally, prospects for future chemotherapeutic alternatives that target Leishmania and HIV and tackle both infections simultaneously are summarized.

Keywords

HIV/Leishmania co-infection Leishmania drug resistance Anti-leishmania secondary prophylaxis Leishmanicidal activity of HIV-proteinase inhibitors (HIV-PI) Leishmaniasis relapses 

Notes

Acknowledgment

The Spanish Agency for International Cooperation for Development supported the WHO Leishmaniasis program and was focused among other activities on the treatment of HIV-Leishmania co-infected patients in Ethiopia. LR is supported by grants from EU HEALTH-2007-223414 and Fondo de Investigación Sanitaria RETICS RD06-0021-06 and PS09/01928.

References

  1. 1.
    Alvar J, Canavate C, Gutierrez-Solar B, Jimenez M, et al. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev. 1997;10(2):298–319.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Alvar J, Aparicio P, Aseffa A, den Boer M, et al. The relationship between Leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev. 2008;21(2):334–59.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cruz I, Morales MA, Noguer I, Rodriguez A, et al. Leishmania in discarded syringes from intravenous drug users. Lancet. 2002;359(9312):1124–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Lopez-Velez R. The impact of highly active antiretroviral therapy (HAART) on visceral leishmaniasis in Spanish patients who are co-infected with HIV. Ann Trop Med Parasitol. 2003;97(Suppl 1):143–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Aagaard-Hansen J, Nombela N, Alvar J. Population movement: a key factor in the epidemiology of neglected tropical diseases. Trop Med Int Health. 2010;15(11):1281–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Mengesha B, Abuhoy M. Kala-azar among labour migrants in Metema-Humera region of Ethiopia. Trop Geogr Med. 1978;30(2):199–206.PubMedGoogle Scholar
  7. 7.
    Lyons S, Veeken H, Long J. Visceral leishmaniasis and HIV in Tigray, Ethiopia. Trop Med Int Health. 2003;8(8):733–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Alvar J, Bashaye S, Argaw D, Cruz I, et al. Kala-azar outbreak in Libo Kemkem, Ethiopia: epidemiologic and parasitologic assessment. Am J Trop Med Hyg. 2007;77(2):275–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Bashaye S, Nombela N, Argaw D, Mulugeta A, et al. Risk factors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia. Am J Trop Med Hyg. 2009;81(1):34–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Gorski S, Collin SM, Ritmeijer K, Keus K, et al. Visceral leishmaniasis relapse in Southern Sudan (1999–2007): a retrospective study of risk factors and trends. PLoS Negl Trop Dis. 2010;4(6):e705.  https://doi.org/10.1371/journal.pntd.0000705.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moszynski P. Kala-azar outbreak is symptomatic of humanitarian crisis facing southern Sudan. BMJ. 2010;341:c7276.  https://doi.org/10.1136/bmj.c7276.CrossRefPubMedGoogle Scholar
  12. 12.
    Seaman J, Mercer AJ, Sondorp HE, Herwaldt BL. Epidemic visceral leishmaniasis in southern Sudan: treatment of severely debilitated patients under wartime conditions and with limited resources [see comments]. Ann Intern Med. 1996;124(7):664–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Redhu NS, Dey A, Balooni V, Singh S. Leishmania-HIV co-infection: an emerging problem in India. Aids. 2006;20(8):1213–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Mathur P, Samantaray JC, Vajpayee M, Samanta P. Visceral leishmaniasis/human immunodeficiency virus co-infection in India: the focus of two epidemics. J Med Microbiol. 2006;55(Pt 7):919–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Gurubacharya RL, Gurubacharya SM, Gurubacharya DL, Quinkel J, et al. Prevalence of visceral leishmaniasis & HIV co-infection in Nepal. Indian J Med Res. 2006;123(3):473–5.PubMedGoogle Scholar
  16. 16.
    Elkhoury EA. Co-infeccao leishmaniose visceral e AIDS no Brasil. Rev Soc Bras Med Trop. 2007;40(124)Google Scholar
  17. 17.
    Bernier R, Turco SJ, Olivier M, Tremblay M. Activation of human immunodeficiency virus type 1 in monocytoid cells by the protozoan parasite Leishmania donovani. J Virol. 1995;69(11):7282–5.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bentwich Z. Concurrent infections that rise the HIV viral load. J HIV Ther. 2003;8(3):72–5.PubMedGoogle Scholar
  19. 19.
    Rosatelli JB, Souza CS, Soares FA, Foss NT, et al. Generalized cutaneous leishmaniasis in acquired immunodeficiency syndrome. J Eur Acad Dermatol Venereol. 1998;10(3):229–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Russo R, Laguna F, Lopez-Velez R, Medrano FJ, et al. Visceral leishmaniasis in those infected with HIV: clinical aspects and other opportunistic infections. Ann Trop Med Parasitol. 2003;97(Suppl 1):99–105.CrossRefPubMedGoogle Scholar
  21. 21.
    Molina R, Lohse JM, Pulido F, Laguna F, et al. Infection of sand flies by humans coinfected with Leishmania infantum and human immunodeficiency virus. Am J Trop Med Hyg. 1999;60(1):51–3.CrossRefPubMedGoogle Scholar
  22. 22.
    Guiguemde RT, Sawadogo OS, Bories C, Traore KL, et al. Leishmania major and HIV co-infection in Burkina Faso. Trans R Soc Trop Med Hyg. 2003;97(2):168–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Pintado V, Martin-Rabadan P, Rivera ML, Moreno S, et al. Visceral leishmaniasis in human immunodeficiency virus (HIV)-infected and non-HIV-infected patients. A comparative study. Medicine (Baltimore). 2001;80(1):54–73.CrossRefGoogle Scholar
  24. 24.
    Ritmeijer K, Dejenie A, Assefa Y, Hundie TB, et al. A comparison of miltefosine and sodium stibogluconate for treatment of visceral leishmaniasis in an Ethiopian population with high prevalence of HIV infection. Clin Infect Dis. 2006;43(3):357–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health. 2001;6(11):849–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Rijal S, Yardley V, Chappuis F, Decuypere S, et al. Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes Infect. 2007;9(4):529–35.  https://doi.org/10.1016/j.micinf.2007.01.009.CrossRefPubMedGoogle Scholar
  27. 27.
    Saint-Pierre-Chazalet M, Ben Brahim M, Le Moyec L, Bories C, et al. Membrane sterol depletion impairs miltefosine action in wild-type and miltefosine-resistant Leishmania donovani promastigotes. J Antimicrob Chemother. 2009;64(5):993–1001.  https://doi.org/10.1093/jac/dkp321.CrossRefPubMedGoogle Scholar
  28. 28.
    Maarouf M, Adeline MT, Solignac M, Vautrin D, et al. Development and characterization of paromomycin-resistant Leishmania donovani promastigotes. Parasite. 1998;5(2):167–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Bart Ostyn PM, Surendra U, Rudra Pratap S, Shri Prakash S, et al. (2010) Challenges for the implementation of new tools to monitor treatment outcome in Miltefosine-treated Kala-azar Patients in India and Nepal. Kaladrug meeting, Antwerp, 2010Google Scholar
  30. 30.
    Al-Mohammed HI, Chance ML, Bates PA. Production and characterization of stable amphotericin-resistant amastigotes and promastigotes of Leishmania mexicana. Antimicrob Agents Chemother. 2005;49(8):3274–80.  https://doi.org/10.1128/AAC.49.8.3274-3280.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Durand R, Paul M, Pratlong F, Rivollet D, et al. Leishmania infantum: lack of parasite resistance to amphotericin B in a clinically resistant visceral leishmaniasis. Antimicrob Agents Chemother. 1998;42(8):2141–3.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lachaud L, Bourgeois N, Plourde M, Leprohon P, et al. Parasite susceptibility to amphotericin B in failures of treatment for visceral leishmaniasis in patients coinfected with HIV type 1 and Leishmania infantum. Clin Infect Dis. 2009;48(2):e16–22.  https://doi.org/10.1086/595710.CrossRefPubMedGoogle Scholar
  33. 33.
    Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.  https://doi.org/10.1128/CMR.00029-06.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sundar S, Sinha PK, Rai M, Verma DK, et al. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet. 2011;377(9764):477–86.  https://doi.org/10.1016/S0140-6736(10)62050-8.CrossRefPubMedGoogle Scholar
  35. 35.
    Matlashewski GBA, Kroeger A, Battacharya S, Sundar S, et al. Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis. 2011;11(4):322–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Gramiccia M, Gradoni L, Orsini S. Decreased sensitivity to meglumine antimoniate (Glucantime) of Leishmania infantum isolated from dogs after several courses of drug treatment. Ann Trop Med Parasitol. 1992;86(6):613–20.CrossRefPubMedGoogle Scholar
  37. 37.
    WHO. WHO Technical Report Series 949. 2010.Google Scholar
  38. 38.
    World Health Organization Report of the 5th Consultative Meeting on Leishmania/HIV Coinfection. WHO Technical Report Series WHO/CDS/NTD/IDM/2007.5. In Addis Ababa, Ethiopia, 20–22 March 2007.Google Scholar
  39. 39.
    de La Rosa R, Pineda JA, Delgado J, Macias J, et al. Incidence of and risk factors for symptomatic visceral leishmaniasis among human immunodeficiency virus type 1-infected patients from Spain in the era of highly active antiretroviral therapy. J Clin Microbiol. 2002;40(3):762–7.CrossRefPubMedCentralGoogle Scholar
  40. 40.
    del Giudice P, Mary-Krause M, Pradier C, Grabar S, et al. Impact of highly active antiretroviral therapy on the incidence of visceral leishmaniasis in a French cohort of patients infected with human immunodeficiency virus. J Infect Dis. 2002;186(9):1366–70.CrossRefPubMedGoogle Scholar
  41. 41.
    Lopez-Velez R, Perez-Molina JA, Guerrero A, Baquero F, et al. Clinicoepidemiologic characteristics, prognostic factors, and survival analysis of patients coinfected with human immunodeficiency virus and Leishmania in an area of Madrid, Spain. Am J Trop Med Hyg. 1998;58(4):436–43.CrossRefPubMedGoogle Scholar
  42. 42.
    Savoia D, Allice T, Tovo PA. Antileishmanial activity of HIV protease inhibitors. Int J Antimicrob Agents. 2005;26(1):92–4.CrossRefPubMedGoogle Scholar
  43. 43.
    Valdivieso E, Rangel A, Moreno J, Saugar JM, et al. Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp. Exp Parasitol. 2010;126(4):557–63.  https://doi.org/10.1016/j.exppara.2010.06.002.CrossRefPubMedGoogle Scholar
  44. 44.
    Trudel N, Garg R, Messier N, Sundar S, et al. Intracellular survival of Leishmania species that cause visceral leishmaniasis is significantly reduced by HIV-1 protease inhibitors. J Infect Dis. 2008;198(9):1292–9.  https://doi.org/10.1086/592280.CrossRefPubMedGoogle Scholar
  45. 45.
    Kumar P, Lodge R, Trudel N, Ouellete M, et al. Nelfinavir, an HIV-1 protease inhibitor, induces oxidative stress-mediated, caspase-independent apoptosis in Leishmania amastigotes. PLoS Negl Trop Dis. 2010;4(3):e642.  https://doi.org/10.1371/journal.pntd.0000642.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Santos LO, Marinho FA, Altoe EF, Vitorio BS, et al. HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS One. 2009;4(3):e4918.  https://doi.org/10.1371/journal.pone.0004918.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Valdivieso E, Dagger F, Rascon A. Leishmania mexicana: identification and characterization of an aspartyl proteinase activity. Exp Parasitol. 2007;116(1):77–82.  https://doi.org/10.1016/j.exppara.2006.10.006.CrossRefPubMedGoogle Scholar
  48. 48.
    Carter KC, Sundar S, Spickett C, Pereira OC, et al. The in vivo susceptibility of Leishmania donovani to sodium stibogluconate is drug specific and can be reversed by inhibiting glutathione biosynthesis. Antimicrob Agents Chemother. 2003;47(5):1529–35.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Goyeneche-Patino DA, Valderrama L, Walker J, Saravia NG. Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob Agents Chemother. 2008;52(12):4503–6.  https://doi.org/10.1128/AAC.01075-08.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Decuypere S, Rijal S, Yardley V, De Doncker S, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005;49(11):4616–21.  https://doi.org/10.1128/AAC.49.11.4616-4621.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cipolla L, La Ferla B, Gregori M. Combinatorial approaches to iminosugars as glycosidase and glycosyltransferase inhibitors. Comb Chem High Throughput Screen. 2006;9(8):571–82.CrossRefPubMedGoogle Scholar
  52. 52.
    Pettersson S, Clotet-Codina I, Este JA, Borrell JI, et al. Recent advances in combinatorial chemistry applied to development of anti-HIV drugs. Mini Rev Med Chem. 2006;6(1):91–108.CrossRefPubMedGoogle Scholar
  53. 53.
    Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci. 2005;78(5):431–41.CrossRefPubMedGoogle Scholar
  54. 54.
    Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs. 2010;8(10):2619–38.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yu D, Morris-Natschke SL, Lee KH. New developments in natural products-based anti-AIDS research. Med Res Rev. 2007;27(1):108–32.CrossRefPubMedGoogle Scholar
  56. 56.
    Fakhfakh MA, Fournet A, Prina E, Mouscadet JF, et al. Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg Med Chem. 2003;11(23):5013–23.CrossRefPubMedGoogle Scholar
  57. 57.
    Delmas F, Avellaneda A, Di Giorgio C, Robin M, et al. Synthesis and antileishmanial activity of (1,3-benzothiazol-2-yl) amino-9-(10H)-acridinone derivatives. Eur J Med Chem. 2004;39(8):685–90.CrossRefPubMedGoogle Scholar
  58. 58.
    Grassi F, Guimaraes Correa AB, Mascarenhas RE, Galvao B, et al. Quinoline compounds decrease in vitro spontaneous proliferation of peripheral blood mononuclear cells (PBMC) from human T-cell lymphotropic virus (HTLV) type-1-infected patients. Biomed Pharmacother. 2008;62(7):430–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Vieira NC, Herrenknecht C, Vacus J, Fournet A, et al. Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical trials. Biomed Pharmacother. 2008;62(10):684–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Nakayama H, Loiseau PM, Bories C, Torres de Ortiz S, et al. Efficacy of orally administered 2-substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother. 2005;49(12):4950–6.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Laport MS, Santos OC, Muricy G. Marine sponges: potential sources of new antimicrobial drugs. Curr pharm biotechnol. 2009;10(1):86–105.CrossRefPubMedGoogle Scholar
  62. 62.
    Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis. 2003;3(6):338–48.CrossRefPubMedGoogle Scholar
  63. 63.
    Tziveleka LA, Vagias C, Roussis V. Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem. 2003;3(13):1512–35.CrossRefPubMedGoogle Scholar
  64. 64.
    Watts KR, Tenney K, Crews P. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opin Biotechnol. 2010;21(6):808–18.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gul W, Hammond NL, Yousaf M, Peng J, et al. Chemical transformation and biological studies of marine sesquiterpene (S)-(+)-curcuphenol and its analogs. Biochimica et biophysica acta. 2007;1770(11):1513–9.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rao KV, Donia MS, Peng J, Garcia-Palomero E, et al. Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J Nat Prod. 2006;69(7):1034–40.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rao KV, Kasanah N, Wahyuono S, Tekwani BL, et al. Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod. 2004;67(8):1314–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rao KV, Santarsiero BD, Mesecar AD, Schinazi RF, et al. New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J Nat Prod. 2003;66(6):823–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gul W, Hammond NL, Yousaf M, Bowling JJ, et al. Modification at the C9 position of the marine natural product isoaaptamine and the impact on HIV-1, mycobacterial, and tumor cell activity. Bioorg Med Chem. 2006;14(24):8495–505.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Donia MS, Wang B, Dunbar DC, Desai PV, et al. Mollamides B and C, Cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J Nat Prod. 2008;71(6):941–5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Margriet den Boer
    • 1
  • Jorge Alvar
    • 2
  1. 1.Medecins Sans FrontieresLondonUK
  2. 2.Drugs for Neglected Diseases InitiativeGenevaSwitzerland

Personalised recommendations