Advertisement

The Role of the Immune System in Resistance to Infection

  • Lukasz Kedzierski
  • Krystal J. Evans
Chapter

Abstract

Leishmaniasis is a spectrum of diseases with clinical symptoms ranging in severity from skin lesions to serious disfigurement and fatal systemic infection. The outcome of infection depends on the parasite species as well as host genetic factors and immune competence. In order to develop a successful infection, Leishmania must evade both the innate and adaptive immune responses. Whilst protective immunity has been driven by Th1-type T cell responses, the role of Th2-type cytokines is not entirely clear, although it has been implicated in susceptibility to leishmaniasis. A successful treatment of all the forms of leishmaniasis depends on efficient elimination of parasites by activated macrophages. Paradoxically, Leishmania species have evolved a variety of strategies to evade leishmanicidal mechanisms and survive in macrophages in the phagosome. Interestingly, most infected individuals develop long-lasting protective immunity following primary infection; however, sterile immunity is hardly ever achieved, and parasites are believed to persist asymptomatically in the host. The vast array of immune cells and cytokines involved in the immune response to Leishmania clearly highlights the complexity of the disease and reveals a complicated net of regulatory and counter-regulatory interactions. This chapter outlines our current knowledge of the immune factors implicated in the disease and discusses the role the immune system plays in resistance to infection.

Keywords

Leishmania T cell Macrophage Cytokine Visceral Cutaneous 

References

  1. 1.
    Basu MK, Ray M. Macrophage and Leishmania: an unacceptable coexistence. Crit Rev Microbiol. 2005;31(3):145–54.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Liew FY, Li Y, Millott S. Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol. 1990;145(12):4306–10.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Iniesta V, Gomez-Nieto LC, Corraliza I. The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J Exp Med. 2001;193(6):777–84.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wei XQ, Charles IG, Smith A, Ure J, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995;375(6530):408–11.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Mukbel RM, Patten C Jr, Gibson K, Ghosh M, et al. Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. Am J Trop Med Hyg. 2007;76(4):669–75.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol. 1998;70:83–243.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ricardo-Carter C, Favila M, Polando RE, Cotton RN, et al. Leishmania major inhibits IL-12 in macrophages by signalling through CR3 (CD11b/CD18) and down-regulation of ETS-mediated transcription. Parasite Immunol. 2013;35(12):409–20.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Belkaid Y, Mendez S, Lira R, Kadambi N, et al. A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol. 2000;165(2):969–77.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Peters NC, Sacks DL. The impact of vector-mediated neutrophil recruitment on cutaneous leishmaniasis. Cell Microbiol. 2009;11(9):1290–6.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Peters NC, Egen JG, Secundino N, Debrabant A, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–4.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathog. 2012;8(2):e1002536.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ribeiro-Gomes FL, Romano A, Lee S, Roffe E, et al. Apoptotic cell clearance of Leishmania major-infected neutrophils by dendritic cells inhibits CD8(+) T-cell priming in vitro by Mer tyrosine kinase-dependent signaling. Cell Death Dis. 2015;6:e2018.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Guimaraes-Costa AB, Nascimento MT, Froment GS, Soares RP, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci USA. 2009;106(16):6748–53.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Carlsen ED, Liang Y, Shelite TR, Walker DH, et al. Permissive and protective roles for neutrophils in leishmaniasis. Clin Exp Immunol. 2015;182(2):109–18.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hurrell BP, Schuster S, Grun E, Coutaz M, et al. Rapid sequestration of Leishmania mexicana by neutrophils contributes to the development of chronic lesion. PLoS Pathog. 2015;11(5):e1004929.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Reiner SL, Locksley RM. The regulation of immunity to Leishmania major. Annu Rev Immunol. 1995;13:151–77.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Von Stebut E. Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. Eur J Dermatol. 2007;17(2):115–22.Google Scholar
  19. 19.
    Ritter U, Meissner A, Scheidig C, Korner H. CD8 alpha- and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis. Eur J Immunol. 2004;34(6):1542–50.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ng LG, Hsu A, Mandell MA, Roediger B, et al. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog. 2008;4(11):e1000222.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Woelbing F, Kostka SL, Moelle K, Belkaid Y, et al. Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity. J Exp Med. 2006;203(1):177–88.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bajenoff M, Breart B, Huang AY, Qi H, et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med. 2006;203(3):619–31.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Feijo D, Tiburcio R, Ampuero M, Brodskyn C, et al. Dendritic cells and Leishmania infection: adding layers of complexity to a complex disease. J Immunol Res. 2016;2016:3967436.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Soong L. Modulation of dendritic cell function by Leishmania parasites. J Immunol. 2008;180(7):4355–60.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gorak PM, Engwerda CR, Kaye PM. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur J Immunol. 1998;28(2):687–95.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    von Stebut E, Belkaid Y, Jakob T, Sacks DL, et al. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J Exp Med. 1998;188(8):1547–52.CrossRefGoogle Scholar
  27. 27.
    Bennett CL, Misslitz A, Colledge L, Aebischer T, et al. Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. Eur J Immunol. 2001;31(3):876–83.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Xin L, Li K, Soong L. Down-regulation of dendritic cell signaling pathways by Leishmania amazonensis amastigotes. Mol Immunol. 2008;45(12):3371–82.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Silveira FT, Lainson R, Gomes CM, Laurenti MD, et al. Reviewing the role of the dendritic Langerhans cells in the immunopathogenesis of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 2008;102(11):1075–80.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Belkaid Y, Butcher B, Sacks DL. Analysis of cytokine production by inflammatory mouse macrophages at the single-cell level: selective impairment of IL-12 induction in Leishmania-infected cells. Eur J Immunol. 1998;28(4):1389–400.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Flohe S, Lang T, Moll H. Synthesis, stability, and subcellular distribution of major histocompatibility complex class II molecules in Langerhans cells infected with Leishmania major. Infect Immun. 1997;65(8):3444–50.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Martinez-Lopez M, Iborra S, Conde-Garrosa R, Sancho D. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur J Immunol. 2015;45(1):119–29.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Akbari M, Honma K, Kimura D, Miyakoda M, et al. IRF4 in dendritic cells inhibits IL-12 production and controls Th1 immune responses against Leishmania major. J Immunol. 2014;192(5):2271–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Bogdan C, Rollinghoff M, Diefenbach A. The role of nitric oxide in innate immunity. Immunol Rev. 2000;173:17–26.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Scott P. The role of TH1 and TH2 cells in experimental cutaneous leishmaniasis. Exp Parasitol. 1989;68(3):369–72.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Iezzi G, Karjalainen K, Lanzavecchia A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity. 1998;8(1):89–95.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006;311:17–58.PubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity. 1998;8(3):275–83.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bogdan C, Moll H, Solbach W, Rollinghoff M. Tumor necrosis factor-alpha in combination with interferon-gamma, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. Eur J Immunol. 1990;20(5):1131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Darrah PA, Patel DT, De Luca PM, Lindsay RW, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med. 2007;13(7):843–50.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2(11):845–58.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Scott P, Eaton A, Gause WC, di Zhou X, et al. Early IL-4 production does not predict susceptibility to Leishmania major. Exp Parasitol. 1996;84(2):178–87.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Uzonna JE, Spath GF, Beverley SM, Scott P. Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol. 2004;172(6):3793–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kedzierski L, Curtis JM, Doherty PC, Handman E, et al. Decreased IL-10 and IL-13 production and increased CD44hi T cell recruitment contribute to Leishmania major immunity induced by non-persistent parasites. Eur J Immunol. 2008;38(11):3090–100.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Stober CB, Lange UG, Roberts MT, Alcami A, et al. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol. 2005;175(4):2517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ehrchen JM, Roebrock K, Foell D, Nippe N, et al. Keratinocytes determine Th1 immunity during early experimental leishmaniasis. PLoS Pathog. 2010;6(4):e1000871.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sunderkotter C, Kunz M, Steinbrink K, Meinardus-Hager G, et al. Resistance of mice to experimental leishmaniasis is associated with more rapid appearance of mature macrophages in vitro and in vivo. J Immunol. 1993;151(9):4891–901.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Himmelrich H, Launois P, Maillard I, Biedermann T, et al. In BALB/c mice, IL-4 production during the initial phase of infection with Leishmania major is necessary and sufficient to instruct Th2 cell development resulting in progressive disease. J Immunol. 2000;164(9):4819–25.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Biedermann T, Zimmermann S, Himmelrich H, Gumy A, et al. IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol. 2001;2(11):1054–60.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005;6(4):353–60.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420(6915):502–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med. 2001;194(10):1497–506.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Campanelli AP, Roselino AM, Cavassani KA, Pereira MS, et al. CD4+CD25+ T cells in skin lesions of patients with cutaneous leishmaniasis exhibit phenotypic and functional characteristics of natural regulatory T cells. J Infect Dis. 2006;193(9):1313–22.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bourreau E, Ronet C, Darcissac E, Lise MC, et al. Intralesional regulatory T-cell suppressive function during human acute and chronic cutaneous leishmaniasis due to Leishmania guyanensis. Infect Immun. 2009;77(4):1465–74.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hoseini SG, Javanmard SH, Zarkesh SH, Khamesipour A, et al. Regulatory T-cell profile in early and late lesions of cutaneous leishmaniasis due to Leishmania major. J Res Med Sci. 2012;17(6):513–8.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Okwor I, Liu D, Beverley SM, Uzonna JE. Inoculation of killed Leishmania major into immune mice rapidly disrupts immunity to a secondary challenge via IL-10-mediated process. Proc Natl Acad Sci USA. 2009;106(33):13951–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Huber M, Timms E, Mak TW, Rollinghoff M, et al. Effective and long-lasting immunity against the parasite Leishmania major in CD8-deficient mice. Infect Immun. 1998;66(8):3968–70.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Muller I, Kropf P, Etges RJ, Louis JA. Gamma interferon response in secondary Leishmania major infection: role of CD8+ T cells. Infect Immun. 1993;61(9):3730–8.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Belkaid Y, Von Stebut E, Mendez S, Lira R, et al. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol. 2002b;168(8):3992–4000.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Uzonna JE, Joyce KL, Scott P. Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon gamma-producing CD8+ T cells. J Exp Med. 2004;199(11):1559–66.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ruiz JH, Becker I. CD8 cytotoxic T cells in cutaneous leishmaniasis. Parasite Immunol. 2007;29(12):671–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Novais FO, Carvalho LP, Graff JW, Beiting DP, et al. Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis. PLoS Pathog. 2013;9(7):e1003504.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Novais FO, Carvalho AM, Clark ML, Carvalho LP, et al. CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1beta production. PLoS Pathog. 2017;13(2):e1006196.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Faria DR, Souza PE, Duraes FV, Carvalho EM, et al. Recruitment of CD8(+) T cells expressing granzyme A is associated with lesion progression in human cutaneous leishmaniasis. Parasite Immunol. 2009;31(8):432–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Santos Cda S, Boaventura V, Ribeiro Cardoso C, Tavares N, et al. CD8(+) granzyme B(+)-mediated tissue injury vs. CD4(+)IFNgamma(+)-mediated parasite killing in human cutaneous leishmaniasis. J Invest Dermatol. 2013;133(6):1533–40.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Cardoso TM, Machado A, Costa DL, Carvalho LP, et al. Protective and pathological functions of CD8+ T cells in Leishmania braziliensis infection. Infect Immun. 2015;83(3):898–906.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bertholet S, Goldszmid R, Morrot A, Debrabant A, et al. Leishmania antigens are presented to CD8+ T cells by a transporter associated with antigen processing-independent pathway in vitro and in vivo. J Immunol. 2006;177(6):3525–33.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Houde M, Bertholet S, Gagnon E, Brunet S, et al. Phagosomes are competent organelles for antigen cross-presentation. Nature. 2003;425(6956):402–6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Rodriguez A, Regnault A, Kleijmeer M, Ricciardi-Castagnoli P, et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol. 1999;1(6):362–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Matheoud D, Moradin N, Bellemare-Pelletier A, Shio MT, et al. Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. Cell Host Microbe. 2013;14(1):15–25.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ashok D, Schuster S, Ronet C, Rosa M, et al. Cross-presenting dendritic cells are required for control of Leishmania major infection. Eur J Immunol. 2014;44(5):1422–32.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Sacks DL, Scott PA, Asofsky R, Sher FA. Cutaneous leishmaniasis in anti-IgM-treated mice: enhanced resistance due to functional depletion of a B cell-dependent T cell involved in the suppressor pathway. J Immunol. 1984;132(4):2072–7.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Hoerauf A, Solbach W, Rollinghoff M, Gessner A. Effect of IL-7 treatment on Leishmania major-infected BALB.Xid mice: enhanced lymphopoiesis with sustained lack of B1 cells and clinical aggravation of disease. Int Immunol. 1995;7(11):1879–84.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Smelt SC, Cotterell SE, Engwerda CR, Kaye PM. B cell-deficient mice are highly resistant to Leishmania donovani infection, but develop neutrophil-mediated tissue pathology. J Immunol. 2000;164(7):3681–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Ronet C, Voigt H, Himmelrich H, Doucey MA, et al. Leishmania major-specific B cells are necessary for Th2 cell development and susceptibility to L. major LV39 in BALB/c mice. J Immunol. 2008;180(7):4825–35.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ronet C, Hauyon-La Torre Y, Revaz-Breton M, Mastelic B, et al. Regulatory B cells shape the development of Th2 immune responses in BALB/c mice infected with Leishmania major through IL-10 production. J Immunol. 2010;184(2):886–94.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Rodriguez-Pinto D, Saravia NG, McMahon-Pratt D. CD4 T cell activation by B cells in human Leishmania (Viannia) infection. BMC Infect Dis. 2014;14:108.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Gollob KJ, Antonelli LR, Faria DR, Keesen TS, et al. Immunoregulatory mechanisms and CD4-CD8- (double negative) T cell subpopulations in human cutaneous leishmaniasis: a balancing act between protection and pathology. Int Immunopharmacol. 2008;8(10):1338–43.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Liese J, Schleicher U, Bogdan C. The innate immune response against Leishmania parasites. Immunobiology. 2008;213(3-4):377–87.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Rodriguez NE, Wilson ME. Eosinophils and mast cells in leishmaniasis. Immunol Res. 2014;59(1–3):129–41.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kopf M, Brombacher F, Kohler G, Kienzle G, et al. IL-4-deficient Balb/c mice resist infection with Leishmania major. J Exp Med. 1996;184(3):1127–36.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Radwanska M, Cutler AJ, Hoving JC, Magez S, et al. Deletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection. PLoS Pathog. 2007;3(5):e68.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Noben-Trauth N, Kropf P, Muller I. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science. 1996;271(5251):987–90.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Alexander J, Brombacher F, McGachy HA, McKenzie AN, et al. An essential role for IL-13 in maintaining a non-healing response following Leishmania mexicana infection. Eur J Immunol. 2002;32(10):2923–33.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lazarski CA, Ford J, Katzman SD, Rosenberg AF, et al. IL-4 attenuates Th1-associated chemokine expression and Th1 trafficking to inflamed tissues and limits pathogen clearance. PLoS One. 2013;8(8):e71949.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hurdayal R, Nieuwenhuizen NE, Revaz-Breton M, Smith L, et al. Deletion of IL-4 receptor alpha on dendritic cells renders BALB/c mice hypersusceptible to Leishmania major infection. PLoS Pathog. 2013;9(10):e1003699.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Brombacher F. The role of interleukin-13 in infectious diseases and allergy. BioEssays. 2000;22(7):646–56.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Matthews DJ, Emson CL, McKenzie GJ, Jolin HE, et al. IL-13 is a susceptibility factor for Leishmania major infection. J Immunol. 2000;164(3):1458–62.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bourreau E, Prevot G, Pradinaud R, Launois P. Interleukin (IL)-13 is the predominant Th2 cytokine in localized cutaneous leishmaniasis lesions and renders specific CD4+ T cells unresponsive to IL-12. J Infect Dis. 2001;183(6):953–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Murphy ML, Wille U, Villegas EN, Hunter CA, et al. IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol. 2001;31(10):2848–56.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    O’Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol. 2007;7(6):425–8.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Costa DL, Cardoso TM, Queiroz A, Milanezi CM, et al. Tr-1-like CD4+CD25-CD127-/lowFOXP3- cells are the main source of interleukin 10 in patients with cutaneous leishmaniasis due to Leishmania braziliensis. J Infect Dis. 2015;211(5):708–18.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Silvestre R, Cordeiro-Da-Silva A, Santarem N, Vergnes B, et al. SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. J Immunol. 2007;179(5):3161–70.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol. 2001;166(2):1141–7.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Groux H, Cottrez F, Rouleau M, Mauze S, et al. A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J Immunol. 1999;162(3):1723–9.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Padigel UM, Alexander J, Farrell JP. The role of interleukin-10 in susceptibility of BALB/c mice to infection with Leishmania mexicana and Leishmania amazonensis. J Immunol. 2003;171(7):3705–10.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Darrah PA, Hegde ST, Patel DT, Lindsay RW, et al. IL-10 production differentially influences the magnitude, quality, and protective capacity of Th1 responses depending on the vaccine platform. J Exp Med. 2010;207(7):1421–33.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Anderson CF, Oukka M, Kuchroo VJ, Sacks D. CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med. 2007;204(2):285–97.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Schwarz T, Remer KA, Nahrendorf W, Masic A, et al. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine. PLoS Pathog. 2013;9(6):e1003476.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gimblet C, Loesche MA, Carvalho L, Carvalho EM, et al. IL-22 protects against tissue damage during cutaneous leishmaniasis. PLoS One. 2015;10(8):e0134698.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hezarjaribi HZ, Ghaffarifar F, Dalimi A, Sharifi Z. Evaluation of protective effect of IL-22 and IL-12 on cutaneous leishmaniasis in BALB/c mice. Asian Pac J Trop Med. 2014;7(12):940–5.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Demoulin JB, Renauld JC. Interleukin 9 and its receptor: an overview of structure and function. Int Rev Immunol. 1998;16(3–4):345–64.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Kopf M, Le Gros G, Bachmann M, Lamers MC, et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature. 1993;362(6417):245–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Monteyne P, Renauld JC, Van Broeck J, Dunne DW, et al. IL-4-independent regulation of in vivo IL-9 expression. J Immunol. 1997;159(6):2616–23.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Gessner A, Blum H, Rollinghoff M. Differential regulation of IL-9-expression after infection with Leishmania major in susceptible and resistant mice. Immunobiology. 1993;189(5):419–35.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Arendse B, Van Snick J, Brombacher F. IL-9 is a susceptibility factor in Leishmania major infection by promoting detrimental Th2/type 2 responses. J Immunol. 2005;174(4):2205–11.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Li MO, Wan YY, Sanjabi S, Robertson AK, et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Mougneau E, Bihl F, Glaichenhaus N. Cell biology and immunology of Leishmania. Immunol Rev. 2011;240(1):286–96.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Barral-Netto M, Barral A, Brownell CE, Skeiky YA, et al. Transforming growth factor-beta in leishmanial infection: a parasite escape mechanism. Science. 1992;257(5069):545–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Li J, Hunter CA, Farrell JP. Anti-TGF-beta treatment promotes rapid healing of Leishmania major infection in mice by enhancing in vivo nitric oxide production. J Immunol. 1999;162(2):974–9.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Heinzel FP, Rerko RM, Hatam F, Locksley RM. IL-2 is necessary for the progression of leishmaniasis in susceptible murine hosts. J Immunol. 1993;150(9):3924–31.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Mattner F, Magram J, Ferrante J, Launois P, et al. Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol. 1996;26(7):1553–9.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Scott P, Artis D, Uzonna J, Zaph C. The development of effector and memory T cells in cutaneous leishmaniasis: the implications for vaccine development. Immunol Rev. 2004;201:318–38.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Pakpour N, Zaph C, Scott P. The central memory CD4+ T cell population generated during Leishmania major infection requires IL-12 to produce IFN-gamma. J Immunol. 2008;180(12):8299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    von Stebut E, Udey MC. Requirements for Th1-dependent immunity against infection with Leishmania major. Microbes Infect. 2004;6(12):1102–9.CrossRefGoogle Scholar
  117. 117.
    Carrera L, Gazzinelli RT, Badolato R, Hieny S, et al. Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med. 1996;183(2):515–26.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Von Stebut E, Ehrchen JM, Belkaid Y, Kostka SL, et al. Interleukin 1 alpha promotes Th1 differentiation and inhibits disease progression in Leishmania major-susceptible BALB/c mice. J Exp Med. 2003;198(2):191–9.CrossRefGoogle Scholar
  119. 119.
    Wang ZE, Reiner SL, Zheng S, Dalton DK, et al. CD4+ effector cells default to the Th2 pathway in interferon gamma-deficient mice infected with Leishmania major. J Exp Med. 1994;179(4):1367–71.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Scharton TM, Scott P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J Exp Med. 1993;178(2):567–77.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Satoskar AR, Stamm LM, Zhang X, Satoskar AA, et al. Mice lacking NK cells develop an efficient Th1 response and control cutaneous Leishmania major infection. J Immunol. 1999;162(11):6747–54.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Nacy CA, Meierovics AI, Belosevic M, Green SJ. Tumor necrosis factor-alpha: central regulatory cytokine in the induction of macrophage antimicrobial activities. Pathobiology. 1991;59(3):182–4.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Gessner A, Vieth M, Will A, Schroppel K, et al. Interleukin-7 enhances antimicrobial activity against Leishmania major in murine macrophages. Infect Immun. 1993;61(9):4008–12.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Swihart K, Fruth U, Messmer N, Hug K, et al. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J Exp Med. 1995;181(3):961–71.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Sadick MD, Heinzel FP, Holaday BJ, Pu RT, et al. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med. 1990;171(1):115–27.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Anderson CF, Mendez S, Sacks DL. Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J Immunol. 2005;174(5):2934–41.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Havell EA. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol. 1989;143(9):2894–9.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Titus RG, Sherry B, Cerami A. Tumor necrosis factor plays a protective role in experimental murine cutaneous leishmaniasis. J Exp Med. 1989;170(6):2097–104.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Bacellar O, Faria D, Nascimento M, Cardoso TM, et al. Interleukin 17 production among patients with American cutaneous leishmaniasis. J Infect Dis. 2009;200(1):75–8.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gonzalez-Lombana C, Gimblet C, Bacellar O, Oliveira WW, et al. IL-17 mediates immunopathology in the absence of IL-10 following Leishmania major infection. PLoS Pathog. 2013;9(3):e1003243.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Moafi M, Rezvan H, Sherkat R, Taleban R, et al. Comparison of pro-inflammatory cytokines of non-healing and healing cutaneous leishmaniasis. Scand J Immunol. 2017;85(4):291–9.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Boulay JL, O’Shea JJ, Paul WE. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity. 2003;19(2):159–63.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Chen Q, Ghilardi N, Wang H, Baker T, et al. Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature. 2000;407(6806):916–20.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Yoshida H, Hamano S, Senaldi G, Covey T, et al. WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity. 2001;15(4):569–78.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Artis D, Johnson LM, Joyce K, Saris C, et al. Cutting edge: early IL-4 production governs the requirement for IL-27-WSX-1 signaling in the development of protective Th1 cytokine responses following Leishmania major infection. J Immunol. 2004;172(8):4672–5.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Oppmann B, Lesley R, Blom B, Timans JC, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Tan ZY, Bealgey KW, Fang Y, Gong YM, et al. Interleukin-23: immunological roles and clinical implications. Int J Biochem Cell Biol. 2009;41(4):733–5.PubMedCrossRefGoogle Scholar
  138. 138.
    Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev. 2004;202:96–105.PubMedCrossRefGoogle Scholar
  139. 139.
    Tolouei S, Ghaedi K, Khamesipour A, Akbari M, et al. IL-23 and IL-27 levels in macrophages collected from peripheral blood of patients with healing vs non-healing form of cutaneous leishmaniasis. Iran J Parasitol. 2012;7(1):18–25.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Diefenbach A, Schindler H, Donhauser N, Lorenz E, et al. Type 1 interferon (IFNalpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity. 1998;8(1):77–87.PubMedCrossRefGoogle Scholar
  141. 141.
    Mattner J, Wandersee-Steinhauser A, Pahl A, Rollinghoff M, et al. Protection against progressive leishmaniasis by IFN-beta. J Immunol. 2004;172(12):7574–82.PubMedCrossRefGoogle Scholar
  142. 142.
    Jaramillo M, Gomez MA, Larsson O, Shio MT, et al. Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. Cell Host Microbe. 2011;9(4):331–41.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Fernandez-Figueroa EA, Rangel-Escareno C, Espinosa-Mateos V, Carrillo-Sanchez K, et al. Disease severity in patients infected with Leishmania mexicana relates to IL-1beta. PLoS Negl Trop Dis. 2012;6(5):e1533.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Lima-Junior DS, Costa DL, Carregaro V, Cunha LD, et al. Inflammasome-derived IL-1beta production induces nitric oxide-mediated resistance to Leishmania. Nat Med. 2013;19(7):909–15.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Gurung P, Karki R, Vogel P, Watanabe M, et al. An NLRP3 inflammasome-triggered Th2-biased adaptive immune response promotes leishmaniasis. J Clin Invest. 2015;125(3):1329–38.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Charmoy M, Hurrell BP, Romano A, Lee SH, et al. The Nlrp3 inflammasome, IL-1beta, and neutrophil recruitment are required for susceptibility to a nonhealing strain of Leishmania major in C57BL/6 mice. Eur J Immunol. 2016;46(4):897–911.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Gannavaram S, Bhattacharya P, Ismail N, Kaul A, et al. Modulation of innate immune mechanisms to enhance Leishmania vaccine-induced immunity: role of coinhibitory molecules. Front Immunol. 2016;7:187.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Oghumu S, Lezama-Davila CM, Isaac-Marquez AP, Satoskar AR. Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol. 2010;126(3):389–96.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Ajdary S, Alimohammadian MH, Eslami MB, Kemp K, et al. Comparison of the immune profile of nonhealing cutaneous leishmaniasis patients with those with active lesions and those who have recovered from infection. Infect Immun. 2000;68(4):1760–4.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Khalil EA, Ayed NB, Musa AM, Ibrahim ME, et al. Dichotomy of protective cellular immune responses to human visceral leishmaniasis. Clin Exp Immunol. 2005;140(2):349–53.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Leclercq V, Lebastard M, Belkaid Y, Louis J, et al. The outcome of the parasitic process initiated by Leishmania infantum in laboratory mice: a tissue-dependent pattern controlled by the Lsh and MHC loci. J Immunol. 1996;157(10):4537–45.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Ali A. Leishmaniases and HIV/AIDS co-infections: review of common features and management experiences. Ethiop Med J. 2002;40(Suppl 1):37–49.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Vidal S, Tremblay ML, Govoni G, Gauthier S, et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med. 1995;182(3):655–66.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Blackwell JM, Goswami T, Evans CA, Sibthorpe D, et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol. 2001;3(12):773–84.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Stober CB, Brode S, White JK, Popoff JF, et al. Slc11a1, formerly Nramp1, is expressed in dendritic cells and influences major histocompatibility complex class II expression and antigen-presenting cell function. Infect Immun. 2007;75(10):5059–67.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Blackwell JM, Barton CH, White JK, Searle S, et al. Genomic organization and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism. Mol Med. 1995;1(2):194–205.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Goswami T, Bhattacharjee A, Babal P, Searle S, et al. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J. 2001;354(Pt 3):511–9.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Singh OP, Gidwani K, Kumar R, Nylen S, et al. Reassessment of immune correlates in human visceral leishmaniasis as defined by cytokine release in whole blood. Clin Vaccine Immunol. 2012;19(6):961–6.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Ahmed S, Colmenares M, Soong L, Goldsmith-Pestana K, et al. Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect Immun. 2003;71(1):401–10.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Miralles GD, Stoeckle MY, McDermott DF, Finkelman FD, et al. Th1 and Th2 cell-associated cytokines in experimental visceral leishmaniasis. Infect Immun. 1994;62(3):1058–63.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Squires KE, Schreiber RD, McElrath MJ, Rubin BY, et al. Experimental visceral leishmaniasis: role of endogenous IFN-gamma in host defense and tissue granulomatous response. J Immunol. 1989;143(12):4244–9.PubMedGoogle Scholar
  162. 162.
    Kurkjian KM, Mahmutovic AJ, Kellar KL, Haque R, et al. Multiplex analysis of circulating cytokines in the sera of patients with different clinical forms of visceral leishmaniasis. Cytometry A. 2006;69(5):353–8.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Sundar S, Reed SG, Sharma S, Mehrotra A, et al. Circulating T helper 1 (Th1) cell- and Th2 cell-associated cytokines in Indian patients with visceral leishmaniasis. Am J Trop Med Hyg. 1997;56(5):522–5.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Singh OP, Sundar S. Immunotherapy and targeted therapies in treatment of visceral leishmaniasis: current status and future prospects. Front Immunol. 2014;5:296.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Engwerda CR, Kaye PM. Organ-specific immune responses associated with infectious disease. Immunol Today. 2000;21(2):73–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Bohme MW, Evans DA, Miles MA, Holborow EJ. Occurrence of autoantibodies to intermediate filament proteins in human visceral leishmaniasis and their induction by experimental polyclonal B-cell activation. Immunology. 1986;59(4):583–8.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Galvao-Castro B, Sa Ferreira JA, Marzochi KF, Marzochi MC, et al. Polyclonal B cell activation, circulating immune complexes and autoimmunity in human American visceral leishmaniasis. Clin Exp Immunol. 1984;56(1):58–66.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Stern JJ, Oca MJ, Rubin BY, Anderson SL, et al. Role of L3T4+ and LyT-2+ cells in experimental visceral leishmaniasis. J Immunol. 1988;140(11):3971–7.PubMedGoogle Scholar
  169. 169.
    Kaye PM, Bancroft GJ. Leishmania donovani infection in scid mice: lack of tissue response and in vivo macrophage activation correlates with failure to trigger natural killer cell-derived gamma interferon production in vitro. Infect Immun. 1992;60(10):4335–42.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Alexander CE, Kaye PM, Engwerda CR. CD95 is required for the early control of parasite burden in the liver of Leishmania donovani-infected mice. Eur J Immunol. 2001;31(4):1199–210.PubMedCrossRefGoogle Scholar
  171. 171.
    Stager S, Smith DF, Kaye PM. Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol. 2000;165(12):7064–71.PubMedCrossRefGoogle Scholar
  172. 172.
    Mary C, Auriault V, Faugere B, Dessein AJ. Control of Leishmania infantum infection is associated with CD8(+) and gamma interferon- and interleukin-5-producing CD4(+) antigen-specific T cells. Infect Immun. 1999;67(11):5559–66.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Joshi T, Rodriguez S, Perovic V, Cockburn IA, et al. B7-H1 blockade increases survival of dysfunctional CD8(+) T cells and confers protection against Leishmania donovani infections. PLoS Pathog. 2009;5(5):e1000431.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Polley R, Stager S, Prickett S, Maroof A, et al. Adoptive immunotherapy against experimental visceral leishmaniasis with CD8+ T cells requires the presence of cognate antigen. Infect Immun. 2006;74(1):773–6.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Maroof A, Brown N, Smith B, Hodgkinson MR, et al. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis. J Infect Dis. 2012;205(5):853–63.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Gautam S, Kumar R, Singh N, Singh AK, et al. CD8 T cell exhaustion in human visceral leishmaniasis. J Infect Dis. 2014;209(2):290–9.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Murphy ML, Cotterell SE, Gorak PM, Engwerda CR, et al. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J Immunol. 1998;161(8):4153–60.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Murray HW, Nathan CF. Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med. 1999;189(4):741–6.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Murray HW, Cartelli DM. Killing of intracellular Leishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and -independent leishmanicidal activity. J Clin Invest. 1983;72(1):32–44.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    McElrath MJ, Murray HW, Cohn ZA. The dynamics of granuloma formation in experimental visceral leishmaniasis. J Exp Med. 1988;167(6):1927–37.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Moore JW, Moyo D, Beattie L, Andrews PS, et al. Functional complexity of the Leishmania granuloma and the potential of in silico modeling. Front Immunol. 2013;4:35.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Lachaud L, Bourgeois N, Plourde M, Leprohon P, et al. Parasite susceptibility to amphotericin B in failures of treatment for visceral leishmaniasis in patients coinfected with HIV type 1 and Leishmania infantum. Clin Infect Dis. 2009;48(2):e16–22.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Antinori S, Cascio A, Parravicini C, Bianchi R, et al. Leishmaniasis among organ transplant recipients. Lancet Infect Dis. 2008;8(3):191–9.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Beattie L, Peltan A, Maroof A, Kirby A, et al. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS Pathog. 2010;6(3):e1000805.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Murray HW. Tissue granuloma structure-function in experimental visceral leishmaniasis. Int J Exp Pathol. 2001;82(5):249–67.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Beattie L, d’El-Rei Hermida M, Moore JW, Maroof A, et al. A transcriptomic network identified in uninfected macrophages responding to inflammation controls intracellular pathogen survival. Cell Host Microbe. 2013;14(3):357–68.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Cervia JS, Rosen H, Murray HW. Effector role of blood monocytes in experimental visceral leishmaniasis. Infect Immun. 1993;61(4):1330–3.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Murray HW, Stern JJ, Welte K, Rubin BY, et al. Experimental visceral leishmaniasis: production of interleukin 2 and interferon-gamma, tissue immune reaction, and response to treatment with interleukin 2 and interferon-gamma. J Immunol. 1987;138(7):2290–7.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Moore JW, Beattie L, Dalton JE, Owens BM, et al. B cell: T cell interactions occur within hepatic granulomas during experimental visceral leishmaniasis. PLoS One. 2012;7(3):e34143.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Cotterell SE, Engwerda CR, Kaye PM. Leishmania donovani infection initiates T cell-independent chemokine responses, which are subsequently amplified in a T cell-dependent manner. Eur J Immunol. 1999;29(1):203–14.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Dey R, Majumder N, Bhattacharyya Majumdar S, Bhattacharjee S, et al. Induction of host protective Th1 immune response by chemokines in Leishmania donovani-infected BALB/c mice. Scand J Immunol. 2007;66(6):671–83.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Sato N, Kuziel WA, Melby PC, Reddick RL, et al. Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J Immunol. 1999;163(10):5519–25.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Stanley AC, Engwerda CR. Balancing immunity and pathology in visceral leishmaniasis. Immunol Cell Biol. 2007;85(2):138–47.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Engwerda CR, Smelt SC, Kaye PM. An in vivo analysis of cytokine production during Leishmania donovani infection in scid mice. Exp Parasitol. 1996;84(2):195–202.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Murray HW, Squires KE, Miralles CD, Stoeckle MY, et al. Acquired resistance and granuloma formation in experimental visceral leishmaniasis. Differential T cell and lymphokine roles in initial versus established immunity. J Immunol. 1992;148(6):1858–63.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Tsagozis P, Karagouni E, Dotsika E. CD8(+) T cells with parasite-specific cytotoxic activity and a Tc1 profile of cytokine and chemokine secretion develop in experimental visceral leishmaniasis. Parasite Immunol. 2003;25(11–12):569–79.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Ghalib HW, Whittle JA, Kubin M, Hashim FA, et al. IL-12 enhances Th1-type responses in human Leishmania donovani infections. J Immunol. 1995;154(9):4623–9.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Tumang MC, Keogh C, Moldawer LL, Helfgott DC, et al. Role and effect of TNF-alpha in experimental visceral leishmaniasis. J Immunol. 1994;153(2):768–75.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Engwerda CR, Ato M, Stager S, Alexander CE, et al. Distinct roles for lymphotoxin-alpha and tumor necrosis factor in the control of Leishmania donovani infection. Am J Pathol. 2004;165(6):2123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Murray HW, Cervia JS, Hariprashad J, Taylor AP, et al. Effect of granulocyte-macrophage colony-stimulating factor in experimental visceral leishmaniasis. J Clin Invest. 1995;95(3):1183–92.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Murray HW, Miralles GD, Stoeckle MY, McDermott DF. Role and effect of IL-2 in experimental visceral leishmaniasis. J Immunol. 1993;151(2):929–38.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Murray HW. Endogenous interleukin-12 regulates acquired resistance in experimental visceral leishmaniasis. J Infect Dis. 1997;175(6):1477–9.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Taylor AP, Murray HW. Intracellular antimicrobial activity in the absence of interferon-gamma: effect of interleukin-12 in experimental visceral leishmaniasis in interferon-gamma gene-disrupted mice. J Exp Med. 1997;185(7):1231–9.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Murray HW, Hariprashad J, Aguero B, Arakawa T, et al. Antimicrobial response of a T cell-deficient host to cytokine therapy: effect of interferon-gamma in experimental visceral leishmaniasis in nude mice. J Infect Dis. 1995;171(5):1309–16.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Murray HW. Effect of continuous administration of interferon-gamma in experimental visceral leishmaniasis. J Infect Dis. 1990;161(5):992–4.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Badaro R, Johnson WD Jr. The role of interferon-gamma in the treatment of visceral and diffuse cutaneous leishmaniasis. J Infect Dis. 1993;167(Suppl 1):S13–7.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Murray HW, Jungbluth A, Ritter E, Montelibano C, et al. Visceral leishmaniasis in mice devoid of tumor necrosis factor and response to treatment. Infect Immun. 2000;68(11):6289–93.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Stager S, Alexander J, Carter KC, Brombacher F, et al. Both interleukin-4 (IL-4) and IL-4 receptor alpha signaling contribute to the development of hepatic granulomas with optimal antileishmanial activity. Infect Immun. 2003;71(8):4804–7.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Wilson ME, Young BM, Davidson BL, Mente KA, et al. The importance of TGF-beta in murine visceral leishmaniasis. J Immunol. 1998;161(11):6148–55.PubMedPubMedCentralGoogle Scholar
  210. 210.
    Murray HW. Accelerated control of visceral Leishmania donovani infection in interleukin-6-deficient mice. Infect Immun. 2008;76(9):4088–91.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Rosas LE, Satoskar AA, Roth KM, Keiser TL, et al. Interleukin-27R (WSX-1/T-cell cytokine receptor) gene-deficient mice display enhanced resistance to Leishmania donovani infection but develop severe liver immunopathology. Am J Pathol. 2006;168(1):158–69.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Rostan O, Gangneux JP, Piquet-Pellorce C, Manuel C, et al. The IL-33/ST2 axis is associated with human visceral leishmaniasis and suppresses Th1 responses in the livers of BALB/c mice infected with Leishmania donovani. MBio. 2013;4(5):e00383–13.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Nascimento MS, Carregaro V, Lima-Junior DS, Costa DL, et al. Interleukin 17A acts synergistically with interferon gamma to promote protection against Leishmania infantum infection. J Infect Dis. 2015;211(6):1015–26.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, et al. Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest. 1993;92(1):324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Murray HW, Moreira AL, Lu CM, DeVecchio JL, et al. Determinants of response to interleukin-10 receptor blockade immunotherapy in experimental visceral leishmaniasis. J Infect Dis. 2003;188(3):458–64.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukin 10. J Exp Med. 1991;174(6):1549–55.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Bhattacharyya S, Ghosh S, Jhonson PL, Bhattacharya SK, et al. Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events. Infect Immun. 2001;69(3):1499–507.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Stager S, Maroof A, Zubairi S, Sanos SL, et al. Distinct roles for IL-6 and IL-12p40 in mediating protection against Leishmania donovani and the expansion of IL-10+ CD4+ T cells. Eur J Immunol. 2006;36(7):1764–71.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Owens BM, Beattie L, Moore JW, Brown N, et al. IL-10-producing Th1 cells and disease progression are regulated by distinct CD11c(+) cell populations during visceral leishmaniasis. PLoS Pathog. 2012;8(7):e1002827.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Svensson M, Zubairi S, Maroof A, Kazi F, et al. Invariant NKT cells are essential for the regulation of hepatic CXCL10 gene expression during Leishmania donovani infection. Infect Immun. 2005;73(11):7541–7.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Kirkpatrick CE, Farrell JP, Warner JF, Denner G. Participation of natural killer cells in the recovery of mice from visceral leishmaniasis. Cell Immunol. 1985;92(1):163–71.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Amprey JL, Im JS, Turco SJ, Murray HW, et al. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med. 2004;200(7):895–904.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Beattie L, Svensson M, Bune A, Brown N, et al. Leishmania donovani-induced expression of signal regulatory protein alpha on Kupffer cells enhances hepatic invariant NKT-cell activation. Eur J Immunol. 2010;40(1):117–23.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Karmakar S, Bhaumik SK, Paul J, De T. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis. PLoS Pathog. 2012;8(4):e1002646.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Stanley AC, Zhou Y, Amante FH, Randall LM, et al. Activation of invariant NKT cells exacerbates experimental visceral leishmaniasis. PLoS Pathog. 2008;4(2):e1000028.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Zijlstra EE, el-Hassan AM. Leishmaniasis in Sudan. Visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2001;95(Suppl 1):S27–58.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Polley R, Zubairi S, Kaye PM. The fate of heterologous CD4+ T cells during Leishmania donovani infection. Eur J Immunol. 2005;35(2):498–504.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Phillips R, Svensson M, Aziz N, Maroof A, et al. Innate killing of Leishmania donovani by macrophages of the splenic marginal zone requires IRF-7. PLoS Pathog. 2010;6(3):e1000813.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Ato M, Maroof A, Zubairi S, Nakano H, et al. Loss of dendritic cell migration and impaired resistance to Leishmania donovani infection in mice deficient in CCL19 and CCL21. J Immunol. 2006;176(9):5486–93.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Engwerda CR, Murphy ML, Cotterell SE, Smelt SC, et al. Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. Eur J Immunol. 1998;28(2):669–80.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Stanley AC, Dalton JE, Rossotti SH, MacDonald KP, et al. VCAM-1 and VLA-4 modulate dendritic cell IL-12p40 production in experimental visceral leishmaniasis. PLoS Pathog. 2008;4(9):e1000158.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Nylen S, Maurya R, Eidsmo L, Manandhar KD, et al. Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med. 2007;204(4):805–17.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Gupta G, Bhattacharjee S, Bhattacharyya S, Bhattacharya P, et al. CXC chemokine-mediated protection against visceral leishmaniasis: involvement of the proinflammatory response. J Infect Dis. 2009;200(8):1300–10.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Resende M, Moreira D, Augusto J, Cunha J, et al. Leishmania-infected MHC class II high dendritic cells polarize CD4+ T cells toward a nonprotective T-bet+ IFN-gamma+ IL-10+ phenotype. J Immunol. 2013;191(1):262–73.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    McFarlane E, Perez C, Charmoy M, Allenbach C, et al. Neutrophils contribute to development of a protective immune response during onset of infection with Leishmania donovani. Infect Immun. 2008;76(2):532–41.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Rousseau D, Demartino S, Ferrua B, Michiels JF, et al. In vivo involvement of polymorphonuclear neutrophils in Leishmania infantum infection. BMC Microbiol. 2001;1:17.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Wilson ME, Recker TJ, Rodriguez NE, Young BM, et al. The TGF-beta response to Leishmania chagasi in the absence of IL-12. Eur J Immunol. 2002;32(12):3556–65.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Maroof A, Beattie L, Zubairi S, Svensson M, et al. Posttranscriptional regulation of II10 gene expression allows natural killer cells to express immunoregulatory function. Immunity. 2008;29(2):295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Bankoti R, Gupta K, Levchenko A, Stager S. Marginal zone B cells regulate antigen-specific T cell responses during infection. J Immunol. 2012;188(8):3961–71.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Engwerda CR, Ato M, Cotterell SE, Mynott TL, et al. A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol. 2002;161(2):429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Ato M, Stager S, Engwerda CR, Kaye PM. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol. 2002;3(12):1185–91.PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Karplus TM, Jeronimo SM, Chang H, Helms BK, et al. Association between the tumor necrosis factor locus and the clinical outcome of Leishmania chagasi infection. Infect Immun. 2002;70(12):6919–25.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Ghose AC, Haldar JP, Pal SC, Mishra BP, et al. Serological investigations on Indian kala-azar. Clin Exp Immunol. 1980;40(2):318–26.PubMedPubMedCentralGoogle Scholar
  244. 244.
    Anam K, Afrin F, Banerjee D, Pramanik N, et al. Differential decline in Leishmania membrane antigen-specific immunoglobulin G (IgG), IgM, IgE, and IgG subclass antibodies in Indian kala-azar patients after chemotherapy. Infect Immun. 1999;67(12):6663–9.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Pontes De Carvalho LC, Badaro R, Carvalho EM, Lannes-Vieira J, et al. Nature and incidence of erythrocyte-bound IgG and some aspects of the physiopathogenesis of anaemia in American visceral leishmaniasis. Clin Exp Immunol. 1986;64(3):495–502.PubMedPubMedCentralGoogle Scholar
  246. 246.
    Deak E, Jayakumar A, Cho KW, Goldsmith-Pestana K, et al. Murine visceral leishmaniasis: IgM and polyclonal B-cell activation lead to disease exacerbation. Eur J Immunol. 2010;40(5):1355–68.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Smelt SC, Engwerda CR, McCrossen M, Kaye PM. Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol. 1997;158(8):3813–21.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Dalton JE, Maroof A, Owens BM, Narang P, et al. Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J Clin Invest. 2010;120(4):1204–16.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Veterinary and Agricultural Sciences, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneAustralia
  2. 2.BioMelbourne NetworkMelbourneAustralia

Personalised recommendations