Molecular Evolution and Phylogeny of Leishmania

  • Gabriele SchönianEmail author
  • Julius Lukeš
  • Olivia Stark
  • James A. Cotton


The genus Leishmania was first described in 1903 for the parasite Leishmania donovani, but many additional species have been described since then. Although recent hierarchical taxonomic schemes have increasingly used molecular or biochemical characters to assign Leishmania organisms into different species, they are still heirs of the first classifications based primarily on geographical distribution, vector species, and disease presentations. The current classification system, based on multilocus enzyme electrophoresis, proposes up to 53 species, although molecular phylogenies of Leishmania suggest that the number of species may be too large. Very recently this classification system has been revised based on multiple gene phylogenies. For many decades, there has been a controversial discussion on whether the genus Leishmania appeared first in the Old World or in the New World. Analyses of whole-genome data led to the supercontinent hypothesis, in which the parasites evolved from a monoxenous ancestor on Gondwana and separated into Paraleishmania and all other species around the time when Gondwana split.

Many molecular markers have demonstrated substantial intraspecies diversity and the existence of geographically and genetically isolated populations in all Leishmania species tested so far. In particular the idea that Leishmania evolve predominantly clonally with only rare sexual recombination has repeatedly been questioned by the detection of hybrids, mosaic genotypes, and gene flow between populations and strong inbreeding and, finally, the detection of genetic recombination under laboratory conditions.

This chapter reviews the recent (mostly) molecular data that provide new insights into the evolution, taxonomy, phylogenetic, and population genetic relationships of Leishmania but also the questions raised by this knowledge. It also discusses the power of modern approaches, such as multilocus sequence analysis, multilocus microsatellite typing, and comparative genomics for studying the inter- and intraspecies variation of Leishmania parasites.


Leishmania Evolution Phylogeny Taxonomy Population genetics Molecular markers Microsatellite typing Whole-genome SNPs 



We thank the many authors that have contributed to what we know today about the molecular evolution and phylogeny of Leishmania and whose work is not cited herein, in particular those who have worked with us, and all of those with whom we have had discussions about this subject. We acknowledge the financial support of the European Union (grants QLK2-CT-2001-01810, INCO-CT2005-015407, FP7-222895); of Deutsche Forschungsgemeinschaft (SCHO 448/6 and 448/8); of Wellcome Trust (078742/Z05/Z and core support of the WT Sanger Institute WT098051 and WT206194); and of the Czech Grant Agency (16-18699S) and the European Research Council (CZ LL1601).


  1. 1.
    Adl SM, Simpson AG, Farmer MA, Andersen RA, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52(5):399–451.PubMedCrossRefGoogle Scholar
  2. 2.
    Kerr SF. Molecular trees of trypanosomes incongruent with fossil records of hosts. Mem Inst Oswaldo Cruz. 2006;101(1):25–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Akhoundi M, Downing T, Votypka J, Kuhls K, et al. Leishmania infections: molecular targets and diagnosis. Mol Asp Med. 2017;57:1–29.CrossRefGoogle Scholar
  4. 4.
    Rioux JA, Lanotte G, Serres E, Pratlong F, et al. Taxonomy of Leishmania. Use of isoenzymes. Suggestions for a new classification. Ann Parasitol Hum Comp. 1990;65(3):111–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Jamjoom MB, Ashford RW, Bates PA, Chance ML, et al. Leishmania donovani is the only cause of visceral leishmaniasis in East Africa; previous descriptions of L. infantum and “L. archibaldi” from this region are a consequence of convergent evolution in the isoenzyme data. Parasitology. 2004;129(Pt 4):399–409.PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhls K, Keilonat L, Ochsenreither S, Schaar M, et al. Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes Infect. 2007;9(3):334–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Van der Auwera G, Bart A, Chicharro C, Cortes S, et al. Comparison of Leishmania typing results obtained from 16 European clinical laboratories in 2014. Euro Surveill. 2016;21(49):30418.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Boite MC, Mauricio IL, Miles MA, Cupolillo E, et al. New insights on taxonomy, phylogeny and population genetics of Leishmania (Viannia) parasites based on multilocus sequence analysis. PLoS Negl Trop Dis. 2012;6(11):e1888.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    El Baiduri F, Diancourt L, Berry V, Chevenet F, et al. Genetic structure and evolution of the Leishmania genus in Africa and Eurasia: what does MLSA tell us. PLoS Negl Trop Dis. 2013;7(6):e2255.CrossRefGoogle Scholar
  10. 10.
    Zhang CY, Lu XJ, Du XQ, Jian J, et al. Phylogenetic and evolutionary analysis of Chinese Leishmania isolates based on multilocus sequence typing. PLoS One. 2013;8(4):e63124.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Schonian G, Kuhls K, Mauricio IL. Molecular approaches for a better understanding of the epidemiology and population genetics of Leishmania. Parasitology. 2011;138(4):405–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Philippe H. Molecular phylogeny of kinetoplastids. In: Coombs GH, et al., editors. Evolutionary relationships among Protozoa. Dordrecht, Boston, London: Kluwer Academic Publishers; 1998. p. 195–212.Google Scholar
  13. 13.
    Simpson AG, Stevens JR, Lukes J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22(4):168–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Hillis DM, Moritz C, editors. Molecular systematics. Sunderland, MA: Sinnauer Associates; 1990.Google Scholar
  15. 15.
    Maiden MC, Bygraves JA, Feil E, Morelli G, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95(6):3140–5.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mauricio IL, Yeo M, Baghaei M, Doto D, et al. Towards multilocus sequence typing of the Leishmania donovani complex: resolving genotypes and haplotypes for five polymorphic metabolic enzymes (ASAT, GPI, NH1, NH2, PGD). Int J Parasitol. 2006;36(7):757–69.PubMedCrossRefGoogle Scholar
  17. 17.
    Zemanova E, Jirku M, Mauricio IL, Horak A, et al. The Leishmania donovani complex: genotypes of five metabolic enzymes (ICD, ME, MPI, G6PDH, and FH), new targets for multilocus sequence typing. Int J Parasitol. 2007;37(2):149–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Jamjoom MB, Ashford RW, Bates PA, Kemp SJ, et al. Polymorphic microsatellite repeats are not conserved between Leishmania donovani and Leishmania major. Mol Ecol Notes. 2002;2:104–6.CrossRefGoogle Scholar
  19. 19.
    Schwenkenbecher JM, Frohlich C, Gehre F, Schnur LF, et al. Evolution and conservation of microsatellite markers for Leishmania tropica. Infect Genet Evol. 2004;4(2):99–105.PubMedCrossRefGoogle Scholar
  20. 20.
    Bhattarai NR, Dujardin JC, Rijal S, De Doncker S, et al. Development and evaluation of different PCR-based typing methods for discrimination of Leishmania donovani isolates from Nepal. Parasitology. 2010;137(6):947–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Botilde Y, Laurent T, Quispe Tintaya W, Chicharro C, et al. Comparison of molecular markers for strain typing of Leishmania infantum. Infect Genet Evol. 2006;6(6):440–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Ivens AC, Peacock CS, Worthey EA, Murphy L, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309(5733):436–42.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Peacock CS, Seeger K, Harris D, Murphy L, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39(7):839–47.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Downing T, Imamura H, Decuypere S, Clark TG, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21(12):2143–56.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rogers MB, Hilley JD, Dickens NJ, Wilkes J, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21(12):2129–42.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Real F, Vidal RO, Carazzolle MF, Mondego JM, et al. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res. 2013;20(6):567–81.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Llanes A, Restrepo CM, Del Vecchio G, Anguizola FJ, et al. The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Sci Rep. 2015;5:8550.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Raymond F, Boisvert S, Roy G, Ritt JF, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40(3):1131–47.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Coughlan S, Mulhair P, Sanders M, Schönian G, et al. The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci Rep. 2017;7:43747.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Aslett M, Aurrecoechea C, Berriman M, Brestelli J, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457–62.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Dumetz F, Imamura H, Sanders M, Seblova V, et al. Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio. 2017;8(3):e00599–17.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Steinbiss S, Siva-Franco F, Brunk B, Foth B, et al. Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 2016;44(W1):W29–34.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    de Toledo JS, Vasconselos EJR, Ferreira TR, Cruz AK. Using genomic information to understand Leishmania biology. Open Parasitol J. 2010;4:156–66.CrossRefGoogle Scholar
  34. 34.
    Valdivia HO, Almeida LV, Roatt BM, Reis-Cunha JL, et al. Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Sci Rep. 2017;7:40804.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sterkers Y, Lachaud L, Crobu L, Bastien P, et al. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol. 2011;13(2):274–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Sterkers Y, Lachaud L, Bourgeois N, Crobu L, et al. Novel insights into genome plasticity in Eukaryotes: mosaic aneuploidy in Leishmania. Mol Microbiol. 2012;86(1):15–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Imamura H, Downing T, Van den Broeck F, Sanders MJ, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. elife. 2016;5:e12613.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF, Baptista RP, et al. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics. 2015;16:715.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Dujardin JC, Mannaert A, Durrant C, Cotton JA. Mosaic aneuploidy in Leishmania: the perspective of whole genome sequencing. Trends Parasitol. 2014;30(12):554–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Rougeron V, De Meeus T, Hide M, Waleckx E, et al. Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci U S A. 2009;106(25):10224–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    El Tai NO, El Fari M, Mauricio I, Miles MA, et al. Leishmania donovani: intraspecific polymorphisms of Sudanese isolates revealed by PCR-based analyses and DNA sequencing. Exp Parasitol. 2001;97(1):35–44.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Jirku M, Yurchenko VY, Lukes J, Maslov DA. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 2012;59(6):537–47.PubMedCrossRefGoogle Scholar
  43. 43.
    Maslov DA, Podlipaev SA, Lukes J. Phylogeny of the kinetoplastida: taxonomic problems and insights into the evolution of parasitism. Mem Inst Oswaldo Cruz. 2001;96(3):397–402.PubMedCrossRefGoogle Scholar
  44. 44.
    Shapiro TA, Englund PT. The structure and replication of kinetoplast DNA. Annu Rev Microbiol. 1995;49:117–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Stevens JR, Noyes HA, Schofield CJ, Gibson W, et al. The molecular evolution of Trypanosomatidae. Adv Parasitol. 2001;48:1–56.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lukes J, Skalicky T, Tyc J, Votypka J, et al. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Tanifuji G, Archibald JM. Actin gene family dynamics in cryptomonads and red algae. J Mol Evol. 2010;71(3):169–79.PubMedCrossRefGoogle Scholar
  48. 48.
    Moreira D, Lopez-Garcia P, Vickerman K. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int J Syst Evol Microbiol. 2004;54(Pt 5):1861–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Flegontov P, Votypka J, Skalicky T, Logacheva MD, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23(18):1787–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Blom D, de Haan A, van den Berg M, Sloof P, et al. RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Res. 1998;26(5):1205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hollar L, Lukes J, Maslov DA. Monophyly of endosymbiont containing trypanosomatids: phylogeny versus taxonomy. J Eukaryot Microbiol. 1998;45(3):293–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Lukes J, Jirku M, Dolezel D, Kral'ova I, et al. Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. J Mol Evol. 1997;44(5):521–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Hamilton PB, Stevens JR, Gaunt MW, Gidley J, et al. Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol. 2004;34(12):1393–404.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Maslov DA, Yurchenko VY, Jirku M, Lukes J, et al. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol. 2010;57(2):177–88.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Merzlyak E, Yurchenko V, Kolesnikov AA, Alexandrov K, et al. Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of Leptomonas and Blastocrithidia. J Eukaryot Microbiol. 2001;48(2):161–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Stevens JR, Noyes HA, Dover GA, Gibson WC, et al. The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology. 1999;118(Pt 1):107–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Svobodova M, Zidkova L, Cepicka I, Obornik M, et al. Sergeia podlipaevi gen. nov., sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera). Int J Syst Evol Microbiol. 2007;57(Pt 2):423–32.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Yurchenko VY, Lukes J, Jirku M, Zeledon R, et al. Leptomonas costaricensis sp. n. (Kinetoplastea: Trypanosomatidae), a member of the novel phylogenetic group of insect trypanosomatids closely related to the genus Leishmania. Parasitology. 2006;133(Pt 5):537–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Votypka J, Maslov DA, Yurchenko V, Jirku M, et al. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol Phylogenet Evol. 2010;54(1):243–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Croan DG, Morrison DA, Ellis JT. Evolution of the genus Leishmania revealed by comparison of DNA and RNA polymerase gene sequences. Mol Biochem Parasitol. 1997;89(2):149–59.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564–77.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Votypka J, et al. Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus Blechomonas gen. n. Protist. 2013;164(6):763–81.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    de Souza W, Motta MC. Endosymbiosis in protozoa of the Trypanosomatidae family. FEMS Microbiol Lett. 1999;173(1):1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Alves JM, Klein CC, da Silva FM, Costa-Martins AG, et al. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol. 2013;13:190.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Morales J, Kokkori S, Weidauer D, Chapman J, et al. Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei. BMC Evol Biol. 2016;16(1):247.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kostygov AY, Dobakova E, Grybchuk-Ieremenko A, Vahala D, et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. MBio. 2016;7(2):e01985.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zahonova K, Kostygov AY, Sevcikova T, Yurchenko V, et al. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol. 2016;26(17):2364–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Maslov DA, Votypka J, Yurchenko V, Lukes J, et al. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013;29(1):43–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Baker JR. Speculations on the evolution of the family Trypanosomatidae Doflein, 1901. Exp Parasitol. 1963;13:219–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Lainson R, Shaw JJ. Evolution, classification and geographical distribution. In: Peters W, Killick-Kendrick R, editors. The leishmaniases in biology and medicine. New York: Academic Press; 1987. p. 1–120.Google Scholar
  73. 73.
    Poinar G Jr. Early Cretaceous trypanosomatids associated with fossil sand fly larvae in Burmese amber. Mem Inst Oswaldo Cruz. 2007;102(5):635–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Chicharro C, Alvar J. Lower trypanosomatids in HIV/AIDS patients. Ann Trop Med Parasitol. 2003;97(Suppl 1):75–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Jimenez MI, Lopez-Velez R, Molina R, Canavate C, et al. HIV co-infection with a currently non-pathogenic flagellate. Lancet. 1996;347(8996):264–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Dedet JP, Pratlong F. Leishmania, Trypanosoma and monoxenous trypanosomatids as emerging opportunistic agents. J Eukaryot Microbiol. 2000;47(1):37–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Kraeva N, Butenko A, Hlavacova J, Kostygov A, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015;11(8):e1005127.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Thomaz-Soccol V, Lanotte G, Rioux JA, Pratlong F, et al. Monophyletic origin of the genus Leishmania Ross, 1903. Ann Parasitol Hum Comp. 1993;68(2):107–8.PubMedGoogle Scholar
  79. 79.
    Thomaz-Soccol V, Lanotte G, Rioux JA, Pratlong F, et al. Phylogenetic taxonomy of New World Leishmania. Ann Parasitol Hum Comp. 1993;68(2):104–6.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Vickerman K. The diversity of the kinetoplastid flagellates. In: Lumsden WHR, Evans DA, editors. Biology of the Kinetoplastida. London: Academic Press; 1976. p. 1–34.Google Scholar
  81. 81.
    Dedet JP. Current status of epidemiology of leishmaniases. In: Farrell JP, editor. Leishmania series: world class parasites. Londin: Kluwer Academis; 2002. p. 1–10.Google Scholar
  82. 82.
    van Eys GJ, Schoone GJ, Kroon NC, Ebeling SB, et al. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol. 1992;51(1):133–42.PubMedCrossRefGoogle Scholar
  83. 83.
    Maslov DA, Avila HA, Lake JA, Simpson L, et al. Evolution of RNA editing in kinetoplastid protozoa. Nature. 1994;368(6469):345–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Zelazny AM, Zhivotovsky L, Weir BS, et al. Evaluation of 7SL RNA gene sequences for the identification of Leishmania spp. Am J Trop Med Hyg. 2005;72(4):415–20.PubMedCrossRefGoogle Scholar
  85. 85.
    Davila AM, Momen H. Internal-transcribed-spacer (ITS) sequences used to explore phylogenetic relationships within Leishmania. Ann Trop Med Parasitol. 2000;94(6):651–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Berzunza-Cruz M, Cabrera N, Crippa-Rossi M, Sosa Cabrera T, et al. Polymorphism analysis of the internal transcribed spacer and small subunit of ribosomal RNA genes of Leishmania mexicana. Parasitol Res. 2002;88(10):918–25.PubMedCrossRefGoogle Scholar
  87. 87.
    Spanakos G, Piperaki ET, Menounos PG, Tegos N, et al. Detection and species identification of Old World Leishmania in clinical samples using a PCR-based method. Trans R Soc Trop Med Hyg. 2008;102(1):46–53.PubMedCrossRefGoogle Scholar
  88. 88.
    Waki K, Dutta S, Ray D, Kolli BK, et al. Transmembrane molecules for phylogenetic analyses of pathogenic protists: Leishmania-specific informative sites in hydrophilic loops of trans- endoplasmic reticulum N-acetylglucosamine-1-phosphate transferase. Eukaryot Cell. 2007;6(2):198–210.PubMedCrossRefGoogle Scholar
  89. 89.
    Asato Y, Oshiro M, Myint CK, Yamamoto Y, et al. Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing. Exp Parasitol. 2009;121(4):352–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Fraga J, Montalvo AM, De Doncker S, Dujardin JC, et al. Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infect Genet Evol. 2010;10(2):238–45.PubMedCrossRefGoogle Scholar
  91. 91.
    Noyes HA, Chance ML, Croan DG, Ellis JT, et al. Leishmania (Sauroleishmania): a comment on classification. Parasitol Today. 1998;14(4):167.PubMedCrossRefGoogle Scholar
  92. 92.
    Cupolillo E, Medina-Acosta E, Noyes H, Momen H, et al. A revised classification for Leishmania and Endotrypanum. Parasitol Today. 2000;16(4):142–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Noyes HA, Arana BA, Chance ML, Maingon R, et al. The Leishmania hertigi (Kinetoplastida; Trypanosomatidae) complex and the lizard Leishmania: their classification and evidence for a neotropical origin of the Leishmania-Endotrypanum clade. J Eukaryot Microbiol. 1997;44(5):511–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Noyes HA, Camps AP, Chance ML. Leishmania herreri (Kinetoplastida; Trypanosomatidae) is more closely related to Endotrypanum (Kinetoplastida; Trypanosomatidae) than to Leishmania. Mol Biochem Parasitol. 1996;80(1):119–23.PubMedCrossRefGoogle Scholar
  95. 95.
    Noyes H, Pratlong F, Chance M, Ellis J, et al. A previously unclassified trypanosomatid responsible for human cutaneous lesions in Martinique (French West Indies) is the most divergent member of the genus Leishmania ss. Parasitology. 2002;124(Pt 1):17–24.PubMedGoogle Scholar
  96. 96.
    Villinsky JT, Klena JD, Abbassy M, Hoel DF, et al. Evidence for a new species of Leishmania associated with a focal disease outbreak in Ghana. Diagn Microbiol Infect Dis. 2008;60(3):323–7.CrossRefGoogle Scholar
  97. 97.
    Sukmee T, Siripattanapipong S, Mungthin M, Worapong J, et al. A suspected new species of Leishmania, the causative agent of visceral leishmaniasis in a Thai patient. Int J Parasitol. 2008;38(6):617–22.PubMedCrossRefGoogle Scholar
  98. 98.
    Rose K, Curtis J, Baldwin T, Mathis A, et al. Cutaneous leishmaniasis in red kangaroos: isolation and characterisation of the causative organisms. Int J Parasitol. 2004;34(6):655–64.PubMedCrossRefGoogle Scholar
  99. 99.
    Dougall A, Shilton C, Low Choy J, Alexander B, et al. New reports of Australian cutaneous leishmaniasis in Northern Australian macropods. Epidemiol Infect. 2009;137(10):1516–20.PubMedCrossRefGoogle Scholar
  100. 100.
    Lobsiger L, Muller N, Schweizer T, Frey CF, et al. An autochthonous case of cutaneous bovine leishmaniasis in Switzerland. Vet Parasitol. 2010;169(3–4):408–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Muller N, Welle M, Lobsiger L, Stoffel MH, et al. Occurrence of Leishmania sp. in cutaneous lesions of horses in Central Europe. Vet Parasitol. 2009;166(3–4):346–51.PubMedCrossRefGoogle Scholar
  102. 102.
    Barratt J, Kaufer A, Peters B, Craig D, et al. Isolation of novel Trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Negl Trop Dis. 2017;11(1):e0005215.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Espinosa OA, Serrano MG, Camargo EP, Texeira MM, et al. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2016:1–13.Google Scholar
  104. 104.
    Akhoundi M, Kuhls K, Cannet A, Votypka J, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10(3):e0004349.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Cupolillo E, Grimaldi G Jr, Momen H. A general classification of New World Leishmania using numerical zymotaxonomy. Am J Trop Med Hyg. 1994;50(3):296–311.PubMedCrossRefGoogle Scholar
  106. 106.
    Thomaz-Soccol V, Velez ID, Pratlong F, Agudelos S, et al. Enzymatic polymorphism and phylogenetic relationships in Leishmania Ross, 1903 (Sarcomastigophora: Kinetoplastida): a case study in Colombia. Syst Parasitol. 2000;46(1):59–68.PubMedCrossRefGoogle Scholar
  107. 107.
    Mauricio IL, Stothard JR, Miles MA. The strange case of Leishmania chagasi. Parasitol Today. 2000;16(5):188–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Kuhls K, Alam MZ, Cupolillo E, Ferreira GE, et al. Comparative microsatellite typing of New World Leishmania infantum reveals low heterogeneity among populations and its recent old world origin. PLoS Negl Trop Dis. 2011;5(6):e1155.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lukes J, Mauricio IL, Schonian G, Dujardin JC, et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci U S A. 2007;104(22):9375–80.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Schwenkenbecher JM, Wirth T, Schnur LF, Jaffe CL, et al. Microsatellite analysis reveals genetic structure of Leishmania tropica. Int J Parasitol. 2006;36(2):237–46.PubMedCrossRefGoogle Scholar
  111. 111.
    Schönian G, Schnur L, el Fari M, Oskam L, et al. Genetic heterogeneity in the species Leishmania tropica revealed by different PCR-based methods. Trans R Soc Trop Med Hyg. 2001;95(2):217–24.PubMedCrossRefGoogle Scholar
  112. 112.
    Chaara D, Banuls AL, Haouas N, Talignani L, et al. Evolutionary history of Leishmania killicki (synonymous Leishmania tropica) and taxonomic implications. Parasit Vectors. 2015a;8:198.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Banuls AL, Jonquieres R, Guerrini F, Le Pont F, et al. Genetic analysis of Leishmania parasites in Ecuador: are Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis distinct taxa? Am J Trop Med Hyg. 1999;61(5):838–45.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Grimaldi G Jr, Tesh RB. Leishmaniases of the New World: current concepts and implications for future research. Clin Microbiol Rev. 1993;6(3):230–50.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Oddone R, Schweynoch C, Schonian G, de Sousa Cdos S, et al. Development of a multilocus microsatellite typing approach for discriminating strains of Leishmania (Viannia) species. J Clin Microbiol. 2009;47(9):2818–25.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cupolillo E, Grimald j G, Momen H, Beverley SM, et al. Intergenic region typing (IRT): a rapid molecular approach to the characterization and evolution of Leishmania. Mol Biochem Parasitol. 1995;73(1–2):145–55.PubMedCrossRefGoogle Scholar
  117. 117.
    da Silva LA, de Sousa Cdos S, da Graca GC, Porrozzi R, et al. Sequence analysis and PCR-RFLP profiling of the hsp70 gene as a valuable tool for identifying Leishmania species associated with human leishmaniasis in Brazil. Infect Genet Evol. 2010;10(1):77–83.PubMedCrossRefGoogle Scholar
  118. 118.
    Kuhls K, Cupolillo E, Silva SO, Schweynoch C, et al. Population structure and evidence for both clonality and recombination among Brazilian strains of the subgenus Leishmania (Viannia). PLoS Negl Trop Dis. 2013;7(10):e2490.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Silveira FT, Ishikawa EA, De Souza AA, Lainson R, et al. An outbreak of cutaneous leishmaniasis among soldiers in Belem, Para State, Brazil, caused by Leishmania (Viannia) lindenbergi n. sp. A new leishmanial parasite of man in the Amazon region. Parasite. 2002;9(1):43–50.PubMedCrossRefGoogle Scholar
  120. 120.
    Jamjoom MB, Ashord RW, Bates PA, Kemp SJ, et al. Towards a standard battery of microsatellite markers for the analysis of the Leishmania donovani complex. Ann Trop Med Parasitol. 2002;96(3):265–70.PubMedCrossRefGoogle Scholar
  121. 121.
    Ochsenreither S, Kuhls K, Schaar M, Presber W, et al. Multilocus microsatellite typing as a new tool for discrimination of Leishmania infantum MON-1 strains. J Clin Microbiol. 2006;44(2):495–503.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Al-Jawabreh A, Diezmann S, Mueller M, Wirth T, et al. Identification of geographically distributed sub-populations of Leishmania (Leishmania) major by microsatellite analysis. BMC Evol Biol. 2008;8(1):183.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Russell R, Iribar MP, Lambson B, Brewster S, et al. Intra and inter-specific microsatellite variation in the Leishmania subgenus Viannia. Mol Biochem Parasitol. 1999;103(1):71–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Rougeron V, Waleckx E, Hide M, De Meeus T, et al. A set of 12 microsatellite loci for genetic studies of Leishmania braziliensis. Mol Ecol Resour. 2008;8:351–3.PubMedCrossRefGoogle Scholar
  125. 125.
    Fakhar M, Motazedian MH, Daly D, Lowe CD, et al. An integrated pipeline for the development of novel panels of mapped microsatellite markers for Leishmania donovani complex, Leishmania braziliensis and Leishmania major. Parasitology. 2008;135(5):567–74.PubMedCrossRefGoogle Scholar
  126. 126.
    Restrepo CM, Llanes A, De La Guardia C, Lleonart R, et al. Genome-wide discovery and development of polymorphic microsatellites from Leishmania panamensis parasites circulating in central Panama. Parasit Vectors. 2015;8:527.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Pajuelo MJ, Eguiluz M, Dahlstrom E, Rquena D, et al. Identification and characterization of microsatellite markers derived from the whole genome analysis of Taenia solium. PLoS Negl Trop Dis. 2015;9(12):e0004316.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Zhan L, Paterson IG, Fraser BA, Watson B, et al. megasat: automated inference of microsatellite genotypes from sequence data. Mol Ecol Resour. 2017;17(2):247–56.PubMedCrossRefGoogle Scholar
  129. 129.
    Chargui N, Amro A, Haouas N, Schonian G, et al. Population structure of Tunisian Leishmania infantum and evidence for the existence of hybrids and gene flow between genetically different populations. Int J Parasitol. 2009;39(7):801–11.PubMedCrossRefGoogle Scholar
  130. 130.
    Seridi N, Amro A, Kuhls K, Belkaid M, et al. Genetic polymorphism of Algerian Leishmania infantum strains revealed by multilocus microsatellite analysis. Microbes Infect. 2008;10(12–13):1309–15.PubMedCrossRefGoogle Scholar
  131. 131.
    Amro A, Schonian G, Al-Sharabati MB, Azmi K, et al. Population genetics of Leishmania infantum in Israel and the Palestinian Authority through microsatellite analysis. Microbes Infect. 2009;11(4):484–92.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Alam MZ, Nakao R, Sakurai T, Kato H, et al. Genetic diversity of Leishmania donovani/infantum complex in China through microsatellite analysis. Infect Genet Evol. 2014;22:112–9.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Gouzelou E, Haralambous C, Antoniou M, Christodoulou V, et al. Genetic diversity and structure in Leishmania infantum populations from southeastern Europe revealed by microsatellite analysis. Parasit Vectors. 2013;6:342.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kuhls K, Chicharro C, Canavate C, Cortes S, et al. Differentiation and gene flow among European populations of Leishmania infantum MON-1. PLoS Negl Trop Dis. 2008;2(7):e261.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Gelanew T, Kuhls K, Hurissa Z, Weldegebreal T, et al. Inference of population structure of Leishmania donovani strains isolated from different Ethiopian visceral leishmaniasis endemic areas. PLoS Negl Trop Dis. 2010;4(11):e889.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Gelanew T, Hailu A, Schonian G, Lewis MD, et al. Multilocus sequence and microsatellite identification of intra-specific hybrids and ancestor-like donors among natural Ethiopian isolates of Leishmania donovani. Int J Parasitol. 2014;44(10):751–7.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Baleela R, Llewellyn MS, Fitzpatrick S, Kuhls K, et al. Leishmania donovani populations in Eastern Sudan: temporal structuring and a link between human and canine transmission. Parasit Vectors. 2014;7:496.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Alam MZ, Kuhls K, Schweynoch C, Sundar S, et al. Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infect Genet Evol. 2009;9(1):24–31.PubMedCrossRefGoogle Scholar
  139. 139.
    Downing T, Stark O, Vanaerschrot M, Imamura H, et al. Genome-wide SNP and microsatellite variation illuminate population-level epidemiology in the Leishmania donovani species complex. Infect Genet Evol. 2012;12(1):149–59.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Mahnaz T, Al-Jawabreh A, Kuhls K, Schonian G, et al. Multilocus microsatellite typing shows three different genetic clusters of Leishmania major in Iran. Microbes Infect. 2011;13(11):937–42.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Alam MZ, Bhutto AM, Soomro FR, Baloch JH, et al. Population genetics of Leishmania (Leishmania) major DNA isolated from cutaneous leishmaniasis patients in Pakistan based on multilocus microsatellite typing. Parasit Vectors. 2014;7:332.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Harrabi M, Bettaieb J, Ghawar W, Toumi A, et al. Spatio-temporal genetic structuring of Leishmania major in Tunisia by microsatellite analysis. PLoS Negl Trop Dis. 2015;9(8):e0004017.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Azmi K, Krayter L, Nasereddin A, Ereqat S, et al. Increased prevalence of human cutaneous leishmaniasis in Israel and the Palestinian Authority caused by the recent emergence of a population of genetically similar strains of Leishmania tropica. In: Infect Genet Evol; 2016.Google Scholar
  144. 144.
    Krayter L, Alam MZ, Rhajaoui K, Schnur LF, et al. Multilocus Microsatellite Typing reveals intra-focal genetic diversity among strains of Leishmania tropica in Chichaoua Province, Morocco. Infect Genet Evol. 2014;28:233–9.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Pratlong F, Rioux JA, Dereure J, Mahjour J, et al. Leishmania tropica in Morocco. IV – Intrafocal enzyme diversity. Ann Parasitol Hum Comp. 1991;66(3):100–4.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Krayter L, et al. Multilocus microsatellite typing reveals a genetic relationship but, also, genetic differences between Indian strains of Leishmania tropica causing cutaneous leishmaniasis and those causing visceral leishmaniasis. Parasit Vectors. 2014;7:123.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Chaara D, Banuls AL, Haouas N, Talignani L, et al. Comparison of Leishmania killicki (syn. L. tropica) and Leishmania tropica population structure in Maghreb by microsatellite typing. PLoS Negl Trop Dis. 2015b;9(12):e0004204.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Krayter L, Schnur LF, Schonian G. The genetic relationship between Leishmania aethiopica and Leishmania tropica revealed by comparing microsatellite profiles. PLoS One. 2015;10(7):e0131227.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Adaui V, Maes I, Huyse T, Van den Broeck F, et al. Multilocus genotyping reveals a polyphyletic pattern among naturally antimony-resistant Leishmania braziliensis isolates from Peru. Infect Genet Evol. 2011;11(8):1873–80.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Tibayrenc M, Kjellberg F, Ayala FJ. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc Natl Acad Sci U S A. 1990;87(7):2414–8.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Rougeron V, Banuls AL, Carme B, Simon S, et al. Reproductive strategies and population structure in Leishmania: substantial amount of sex in Leishmania Viannia guyanensis. Mol Ecol. 2011;20(15):3116–27.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Akopyants NS, Kimblin N, Secundino N, Patrick R, et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324(5924):265–8.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Bonfante-Garrido R, Melendez E, Barroeta S, de Alejos MA, et al. Cutaneous leishmaniasis in western Venezuela caused by infection with Leishmania venezuelensis and L. braziliensis variants. Trans R Soc Trop Med Hyg. 1992;86(2):141–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Belli AA, Miles MA, Kelly JM. A putative Leishmania panamensis/Leishmania braziliensis hybrid is a causative agent of human cutaneous leishmaniasis in Nicaragua. Parasitology. 1994;109(Pt 4):435–42.PubMedCrossRefGoogle Scholar
  155. 155.
    Ravel C, Cortes S, Pratlong F, Morio F, et al. First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. Int J Parasitol. 2006;36(13):1383–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Nolder D, Roncal N, Davies CR, Llanos-Cuentas A, et al. Multiple hybrid genotypes of Leishmania (Viannia) in a focus of mucocutaneous leishmaniasis. Am J Trop Med Hyg. 2007;76(3):573–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Darce M, Moran J, Palacios X, Belli A, et al. Etiology of human cutaneous leishmaniasis in Nicaragua. Trans R Soc Trop Med Hyg. 1991;85(1):58–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Rogers MB, Downing T, Smith BA, Imamura H, et al. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet. 2014;10(1):e1004092.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Tuon FF, Neto VA, Amato VS. Leishmania: origin, evolution and future since the Precambrian. FEMS Immunol Med Microbiol. 2008;54(2):158–66.PubMedCrossRefGoogle Scholar
  160. 160.
    Lewis D. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull Br Mus Nat Hist (Ent). 1982;45:121–209.Google Scholar
  161. 161.
    Kerr SF. Palaearctic origin of Leishmania. Mem Inst Oswaldo Cruz. 2000;95(1):75–80.PubMedCrossRefGoogle Scholar
  162. 162.
    Noyes HA, Morrison DA, Chance ML, Ellis JT, et al. Evidence for a neotropical origin of Leishmania. Mem Inst Oswaldo Cruz. 2000;95(4):575–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Poinar G Jr, Poinar R. Evidence of vector-borne disease of Early Cretaceous reptiles. Vector Borne Zoonotic Dis. 2004a;4(4):281–4.PubMedCrossRefGoogle Scholar
  164. 164.
    Poinar G Jr, Poinar R. Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber. Protist. 2004b;155(3):305–10.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Goldner A, Herold N, Huber M. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition. Nature. 2014;511(7511):574–7.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Momen H, Cupolillo E. Speculations on the origin and evolution of the genus Leishmania. Mem Inst Oswaldo Cruz. 2000;95(4):583–8.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Harkins KM, Schwartz RS, Cartwright RA, Stone AC, et al. Phylogenomic reconstruction supports supercontinent origins for Leishmania. Infect Genet Evol. 2016;38:101–9.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Shaw JJ. Ecological and evolutionary pressures on leishmanial parasites. Braz J Genet. 1997;20:123–8.CrossRefGoogle Scholar
  169. 169.
    Fernandes AP, Nelson K, Beverley SM. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci U S A. 1993;90(24):11608–12.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Momen H, Pacheco RS, Cupolillo E, Grimaldi G Jr, et al. Molecular evidence for the importation of Old World Leishmania into the Americas. Biol Res. 1993;26(1-2):249–55.PubMedGoogle Scholar
  171. 171.
    Leblois R, Kuhls K, Francois O, Schonian G, et al. Guns, germs and dogs: on the origin of Leishmania chagasi. Infect Genet Evol. 2011;11(5):1091–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gabriele Schönian
    • 1
    Email author
  • Julius Lukeš
    • 2
  • Olivia Stark
    • 1
  • James A. Cotton
    • 3
  1. 1.Charité – Universitätsmedizin Berlin, Institut für Mikrobiologie und HygieneBerlinGermany
  2. 2.Biology Centre, Institute of Parasitology, Czech Academy of SciencesCeske Budějovice (Budweis)Czech Republic
  3. 3.Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK

Personalised recommendations