Advertisement

The Role of Proteomics in the Study of Drug Resistance

  • Leonardo Saboia-Vahia
  • Jose Batista de Jesus
  • Patricia Cuervo
Chapter

Abstract

The recent completion of the genomic sequencing of three species of Leishmania, L. (L.) major, L. (L.) infantum, and L. (V.) braziliensis has enormous relevance to the study of the leishmaniasis pathogenesis. However, since in Leishmania the control of gene expression relies on the stability or processing of the mature mRNA, as well as on the posttranslational modifications of proteins, the genomic sequences alone are insufficient to predict protein expression within the parasites. In this scenario, proteomic technologies provide feasible pathways to functional studies of this parasite. With the challenging increase of natural drug resistance by Leishmania, the combination of the available genomic resources of these parasites with powerful high-throughput proteomic analysis is urgently needed to shed light on resistance mechanisms and identify new drug targets against Leishmania. Diverse proteomic approaches have been used to describe and catalogue global protein profiles of Leishmania spp. reveal changes in protein expression during development, determine the subcellular localization of gene products, evaluate host-parasite interactions, and elucidate drug resistance mechanisms. The characterization of these proteins has advanced, although many fundamental questions remain unanswered. Here we discuss the recent proteomic discoveries that have contributed to the understanding of drug resistance mechanisms in Leishmania parasites.

References

  1. 1.
    Ivens AC, Peacock CS, Worthey EA, Murphy L, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309:436–42.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Peacock CS, Seeger K, Harris D, Murphy L, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39:839–47.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Imamura H, Downing T, Van den Broeck F, Sanders MJ, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. Elife. 2016;5:e12613.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Faraut-Gambarelli F, Piarroux R, Deniau M, Giusiano B, et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother. 1997;41:827–30.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lira R, Sundar S, Makharia A, Kenney R, et al. Evidence that the high incidence of treatment failures in Indian kalaazar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis. 1999;180:564–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Palacios R, Osorio LE, Grajalew LF, Ochoa MT. Treatment failure in children in a randomized clinical trial with 10 and 20 days of meglumine antimonate for cutaneous leishmaniasis due to Leishmania Viannia species. Am J Trop Med Hyg. 2001;64:187–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health. 2001;6:849–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Abdo MG, Elamin WM, Khalil EA, Mukhtar MM. Antimony-resistant Leishmania donovani in eastern Sudan: incidence and in vitro correlation. East Mediterr Health J. 2003;9:837–43.PubMedGoogle Scholar
  10. 10.
    Das VN, Ranjan A, Bimal S, Siddique NA, et al. Magnitude of unresponsiveness to sodium stibogluconate in the treatment of visceral leishmaniasis in Bihar. Natl Med J India. 2005;18:131–3.PubMedGoogle Scholar
  11. 11.
    Hadighi R, Mohebali M, Boucher P, Hajjaran H, et al. Unresponsiveness to Glucantime treatment in Iranian cutaneous leishmaniasis due to drug-resistant Leishmania tropica parasites. PLoS Med. 2006;3:e162.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rojas R, Valderrama L, Valderrama M, Varona MX, et al. Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis. 2006;193:1375–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Holzer TR, McMaster WR, Forney JD. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol. 2006;146:198–218.PubMedCrossRefGoogle Scholar
  14. 14.
    Leifso K, Cohen-Freue G, Dogra N, Murray A, et al. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol. 2007;152:35–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen-Freue G, Holzer TR, Forney JD, McMaster WR. Global gene expression in Leishmania. Int J Parasitol. 2007;37:1077–86.PubMedCrossRefGoogle Scholar
  16. 16.
    El-Sayed NM, Myler PJ, Blandin G, Berriman M, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Rogers MB, Hilley JD, Dickens NJ, Wilkes J, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21:2129–42.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015;11:e1005186.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ubeda JM, Légaré D, Raymond F, Ouameur AA, et al. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol. 2008;9:R115.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Leprohon P, Légaré D, Raymond F, Hardiman G, et al. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 2009;37:1387–99.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Downing T, Imamura H, Decuypere S, Clark TG, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21:2143–56.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 2012;28:370–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol. 2007;156:93–101.PubMedCrossRefGoogle Scholar
  24. 24.
    Haile S, Papadopoulou B. Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol. 2007;10:569–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee MG, Atkinson BL, Giannini SH, Van der Ploeg LH. Structure and expression of the hsp 70 gene family of Leishmania major. Nucleic Acids Res. 1988;16:9567–85.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Quijada L, Soto M, Alonso C, Requena JM. Analysis of post-transcriptional regulation operating on transcription products of the tandemly linked Leishmania infantum hsp70 genes. J Biol Chem. 1997;272:4493–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Holzer TR, Mishra KK, LeBowitz JH, Forney JD. Coordinate regulation of a family of promastigote-enriched mRNAs by the 3′UTR PRE element in Leishmania mexicana. Mol Biochem Parasitol. 2008;157:54–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Saxena A, Lahav T, Holland N, Aggarwal G, et al. Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol. 2007;152:53–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Almeida R, Gilmartin BJ, McCann SH, Norrish A, et al. Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Mol Biochem Parasitol. 2004;136:87–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, et al. Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol. 2004;136:71–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Rochette A, Raymond F, Ubeda JM, Smith M, et al. Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics. 2008;9:255.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Guimond C, Trudel N, Brochu C, Marquis N, et al. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res. 2003;31:5886–96.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Quijada L, Soto M, Requena JM. Genomic DNA macroarrays as a tool for analysis of gene expression in Leishmania. Exp Parasitol. 2005;111:64–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Depledge DP, Evans KJ, Ivens AC, Aziz N, et al. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis. 2009;3:e476.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Leprohon P, Légaré D, Girard I, Papadopoulou B, et al. Modulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites. Eukaryot Cell. 2006;5:1713–25.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    McNicoll F, Drummelsmith J, Müller M, Madore E, et al. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics. 2006;6:3567–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Walther TC, Mann M. Mass spectrometry-based proteomics in cell biology. J Cell Biol. 2010;190:491–500.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Karas M, Hillemkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 kDa. Anal Chem. 1988;60:2299–301.PubMedCrossRefGoogle Scholar
  39. 39.
    Tanaka K, Waki H, Ido Y, Akita S, et al. Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.CrossRefGoogle Scholar
  40. 40.
    Fenn J, Mann M, Meng CK, Wong SF, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Cuervo P, Domont GB, De Jesus JB. Proteomics of trypanosomatids of human medical importance. J Proteomics. 2010;73:845–67.PubMedCrossRefGoogle Scholar
  42. 42.
    Paape D, Aebischer T. Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics. 2011;74:1614–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Paape D, Barrios-Llerena ME, Le BT, Mackay L, et al. Gel free analysis of the proteome of intracellular Leishmania mexicana. Mol Biochem Parasitol. 2010;169:108–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, et al. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J Proteome Res. 2013;12:3405–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Braga MS, Neves LX, Campos JM, Roatt BM, et al. Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents. Mol Biochem Parasitol. 2014;195:43–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Pawar H, Sahasrabuddhe NA, Renuse S, Keerthikumar S, et al. A proteogenomic approach to map the proteome of an unsequenced pathogen - Leishmania donovani. Proteomics. 2012;12:832–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Pescher P, Blisnick T, Bastin P, Spath GF. Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cell Microbiol. 2011;13:978–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Biyani N, Madhubala R. Quantitative proteomic profiling of the promastigotes and the intracellular amastigotes of Leishmania donovani isolates identifies novel proteins having a role in Leishmania differentiation and intracellular survival. Biochim Biophys Acta. 2012;1824:1342–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Sardar AH, Kumar S, Kumar A, Purkait B, et al. Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J Proteomics. 2013;81:185–99.PubMedCrossRefGoogle Scholar
  50. 50.
    Singh AK, Roberts S, Ullman B, Madhubala R. A quantitative proteomic screen to identify potential drug resistance mechanism in alpha-difluoromethylornithine (DFMO) resistant Leishmania donovani. J Proteomics. 2014;102:44–59.PubMedCrossRefGoogle Scholar
  51. 51.
    Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, et al. Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends. Mol Cell Proteomics. 2014;13:1787–99.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zilberstein D. Proteomic analysis of posttranslational modifications using iTRAQ in Leishmania. Methods Mol Biol. 2015;1201:261–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Wyllie S, Roberts AJ, Norval S, Patterson S, et al. Activation of bicyclic nitro-drugs by a novel nitroreductase (NTR2) in Leishmania. PLoS Pathog. 2016;12:e1005971.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Acestor N, Masina S, Walker J, Saravia NG, et al. Establishing two-dimensional gels for the analysis of Leishmania proteomes. Proteomics. 2002;2:877–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Góngora R, Acestor N, Quadroni M, Fasel N, et al. Mapping the proteome of Leishmania Viannia parasites using two-dimensional polyacrylamide gel electrophoresis and associated technologies. Biomédica. 2003;23:153–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Drummelsmith J, Brochu V, Girard I, Messier N, et al. Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Mol Cell Proteomics. 2003;2:146–55.PubMedCrossRefGoogle Scholar
  57. 57.
    Brobey RK, Mei FC, Cheng X, Soong L. Comparative two-dimensional gel electrophoresis maps for promastigotes of Leishmania amazonensis and Leishmania major. Braz J Infect Dis. 2006;10:1–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Brobey RK, Soong L. Establishing a liquid-phase IEF in combination with 2-DE for the analysis of Leishmania proteins. Proteomics. 2007;7:116–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Cuervo P, de Jesus JB, Junqueira M, Mendonça-Lima L, et al. Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry. Mol Biochem Parasitol. 2007;154:6–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Costa MM, Andrade HM, Bartholomeu DC, Freitas LM, et al. Analysis of Leishmania chagasi by 2-D difference gel electrophoresis (2-D DIGE) and immunoproteomic: identification of novel candidate antigens for diagnostic tests and vaccine. J Proteome Res. 2011;10:2172–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Aebischer T. Leishmania spp. proteome data sets: a comprehensive resource for vaccine development to target visceral leishmaniasis. Front Immunol. 2014;5:260.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    da Fonseca Pires S, Fialho LC Jr, Silva SO, Melo MN, et al. Identification of virulence factors in Leishmania infantum strains by a proteomic approach. J Proteome Res. 2014;13:1860–72.PubMedCrossRefGoogle Scholar
  63. 63.
    McCall LI, Zhang WW, Dejgaard K, Atayde VD, et al. Adaptation of Leishmania donovani to cutaneous and visceral environments: in vivo selection and proteomic analysis. J Proteome Res. 2015;14:1033–59.PubMedCrossRefGoogle Scholar
  64. 64.
    Alcolea PJ, Tuñón GI, Alonso A, García-Tabares F, et al. Differential protein abundance in promastigotes of nitric oxide-sensitive and resistant Leishmania chagasi strains. Proteomics Clin Appl. 2016;10:1132–46.PubMedCrossRefGoogle Scholar
  65. 65.
    Yau WL, Lambertz U, Colineau L, Pescher P, et al. Phenotypic characterization of a Leishmania donovani cyclophilin 40 null mutant. J Eukaryot Microbiol. 2016;63:823–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Thiel M, Bruchhaus I. Comparative proteome analysis of Leishmania donovani at different stages of transformation from promastigotes to amastigotes. Med Microbiol Immunol. 2001;190:33–6.PubMedCrossRefGoogle Scholar
  67. 67.
    El Fakhry Y, Ouellette M, Papadopoulou B. A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics. 2002;2:1007–17.PubMedCrossRefGoogle Scholar
  68. 68.
    Bente M, Harder S, Wiesgigl M, Heukeshoven J, et al. Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics. 2003;3:1811–29.PubMedCrossRefGoogle Scholar
  69. 69.
    Nugent PG, Karsani SA, Wait R, Tempero J, et al. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol. 2004;136:51–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Walker J, Vasquez JJ, Gomez MA, Drummelsmith J, et al. Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Mol Biochem Parasitol. 2006;147:64–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Foucher AL, Papadopoulou B, Ouellette M. Prefractionation by digitonin extraction increases representation of the cytosolic and intracellular proteome of Leishmania infantum. J Proteome Res. 2006;5:1741–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Rosenzweig D, Smith D, Opperdoes F, Stern S, et al. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. 2008a;22:590–602.PubMedCrossRefGoogle Scholar
  73. 73.
    Morales MA, Watanabe R, Laurent C, Lenormand P, et al. Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics. 2008;8:350–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Mojtahedi Z, Clos J, Kamali-Sarvestani E. Leishmania major: identification of developmentally regulated proteins in procyclic and metacyclic promastigotes. Exp Parasitol. 2008;119:422–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Paape D, Lippuner C, Schmid M, Ackermann R, et al. Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Mol Cell Proteomics. 2008;7:1688–701.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nirujogi RS, Pawar H, Renuse S, Kumar P, et al. Moving from unsequenced to sequenced genome: reanalysis of the proteome of Leishmania donovani. J Proteomics. 2014;97:48–61.PubMedCrossRefGoogle Scholar
  77. 77.
    Rosenzweig D, Smith D, Myler PJ, Olafson RW, et al. Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics. 2008b;8:1843–50.PubMedCrossRefGoogle Scholar
  78. 78.
    Hem S, Gherardini PF, Osorio y Fortéa J, Hourdel V, et al. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Proteomics. 2010;10:3868–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Moreira D de S, Pescher P, Laurent C, Lenormand P, et al. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology. Proteomics. 2015;15:2999–3019.CrossRefGoogle Scholar
  80. 80.
    Bachmaier S, Witztum R, Tsigankov P, Koren R, et al. Protein kinase A signaling during bidirectional axenic differentiation in Leishmania. Int J Parasitol. 2016;46:75–82.PubMedCrossRefGoogle Scholar
  81. 81.
    Morales MA, Watanabe R, Dacher M, Chafey P, et al. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci USA. 2010;107:8381–6.PubMedCrossRefGoogle Scholar
  82. 82.
    de Oliveira AH, Ruiz JC, Cruz AK, Greene LJ, et al. Subproteomic analysis of soluble proteins of the microsomal fraction from two Leishmania species. Comp Biochem Physiol Part D Genomic Proteomics. 2006;1:300–8.CrossRefGoogle Scholar
  83. 83.
    Hide M, Ritleng AS, Brizard JP, Monte-Allegre A, et al. Leishmania infantum: tuning digitonin fractionation for comparative proteomic of the mitochondrial protein content. Parasitol Res. 2008;103:989–92.PubMedCrossRefGoogle Scholar
  84. 84.
    Silverman JM, Chan SK, Robinson DP, Dwyer DM, et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 2008;9:R35.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Cuervo P, De Jesus JB, Saboia-Vahia L, Mendonça-Lima L, et al. Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. J Proteomics. 2009;73:79–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Brotherton MC, Racine G, Ouameur AA, Leprohon P, et al. Analysis of membrane-enriched and high molecular weight proteins in Leishmania infantum promastigotes and axenic amastigotes. J Proteome Res. 2012;11:3974–85.PubMedCrossRefGoogle Scholar
  87. 87.
    Lynn MA, Marr AK, McMaster WR. Differential quantitative proteomic profiling of Leishmania infantum and Leishmania mexicana density gradient separated membranous fractions. J Proteomics. 2013;82:179–92.PubMedCrossRefGoogle Scholar
  88. 88.
    Santarém N, Racine G, Silvestre R, Cordeiro-da-Silva A, et al. Exoproteome dynamics in Leishmania infantum. J Proteomics. 2013;84:106–18.PubMedCrossRefGoogle Scholar
  89. 89.
    Atayde VD, Aslan H, Townsend S, Hassani K, et al. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut. Cell Rep. 2015;13:957–67.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kumar A, Misra P, Sisodia B, Shasany AK, et al. Proteomic analyses of membrane enriched proteins of Leishmania donovani Indian clinical isolate by mass spectrometry. Parasitol Int. 2015;64:36–42.PubMedCrossRefGoogle Scholar
  91. 91.
    Lima BS, Fialho LC Jr, Pires SF, Tafuri WL, et al. Immunoproteomic and bioinformatic approaches to identify secreted Leishmania amazonensis, L. braziliensis, and L. infantum proteins with specific reactivity using canine serum. Vet Parasitol. 2016;223:115–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Drummelsmith J, Girard I, Trudel N, Ouellette M. Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. J Biol Chem. 2004;279:33273–80.PubMedCrossRefGoogle Scholar
  93. 93.
    Vergnes B, Gourbal B, Girard I, Sundar S, et al. A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics. 2007;6:88–101.PubMedCrossRefGoogle Scholar
  94. 94.
    El Fadili K, Drummelsmith J, Roy G, Jardim A, et al. Down regulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Exp Parasitol. 2009;123:51–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Matrangolo FS, Liarte DB, Andrade LC, de Melo MF, et al. Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol. 2013;190:63–75.PubMedCrossRefGoogle Scholar
  96. 96.
    Carnielli JB, de Andrade HM, Pires SF, Chapeaurouge AD, et al. Proteomic analysis of the soluble proteomes of miltefosine-sensitive and -resistant Leishmania infantum chagasi isolates obtained from Brazilian patients with different treatment outcomes. J Proteomics. 2014;108:198–208.PubMedCrossRefGoogle Scholar
  97. 97.
    Singh G, Chavan HD, Dey CS. Proteomic analysis of miltefosine-resistant Leishmania reveals the possible involvement of eukaryotic initiation factor 4A (eIF4A). Int J Antimicrob Agents. 2008a;31:584–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Singh G, Jayanarayan KG, Dey CS. Arsenite resistance in Leishmania and possible drug targets. Adv Exp Med Biol. 2008b;625:1–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Vincent IM, Racine G, Légaré D, Ouellette M. Mitochondrial proteomics of antimony and miltefosine resistant Leishmania infantum. Proteomes. 2015;3:328–46.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Akpunarlieva S, Weidt S, Lamasudin D, Naula C, et al. Integration of proteomics and metabolomics to elucidate metabolic adaptation in Leishmania. J Proteomics. 2017;155:85–98.PubMedCrossRefGoogle Scholar
  101. 101.
    Sharma S, Singh G, Chavan HD, Dey CS. Proteomic analysis of wild type and arsenite-resistant Leishmania donovani. Exp Parasitol. 2009;123:369–76.PubMedCrossRefGoogle Scholar
  102. 102.
    Kumar A, Sisodia B, Misra P, Sundar S, et al. Proteome mapping of overexpressed membrane-enriched and cytosolic proteins in sodium antimony gluconate (SAG) resistant clinical isolate of Leishmania donovani. Br J Clin Pharmacol. 2010;70:609–17.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Peláez RG, Muskus CE, Cuervo P, Marín-Villa M. Differential expression of proteins in Leishmania (Viannia) panamensis associated with mechanisms of resistance to meglumine antimoniate. Biomedica. 2012;32:418–29.PubMedCrossRefGoogle Scholar
  104. 104.
    Walker J, Gongora R, Vasquez JJ, Drummelsmith J, et al. Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol. 2012;183:166–76.PubMedCrossRefGoogle Scholar
  105. 105.
    Messaritakis I, Christodoulou V, Mazeris A, Koutala E, et al. Drug resistance in natural isolates of Leishmania donovani s.l. promastigotes is dependent of Pgp170 expression. PLoS One. 2013;8:e65467.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Brotherton MC, Bourassa S, Leprohon P, Légaré D, et al. Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS One. 2013;8:e81899.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Brotherton MC, Bourassa S, Légaré D, Poirier GG, et al. Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2014;4:126–32.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Vacchina P, Norris-Mullins B, Carlson ES, Morales MA. A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani. Parasit Vectors. 2016;9:621.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    MacGillivray AJ, Rickwood D. The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur J Biochem. 1974;41:181–90.PubMedCrossRefGoogle Scholar
  110. 110.
    O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Anderson L, Anderson NG. High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci USA. 1977;74:5421–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Bravo R, Celis JE. A search for differential polypeptide synthesis throughout the cell cycle of HeLa cells. J Cell Biol. 1980;84:795–802.PubMedCrossRefGoogle Scholar
  113. 113.
    Taylor J, Anderson NL, Scandora AE Jr, Willard KE, et al. Design and implementation of a prototype human protein index. Clin Chem. 1982;28:861–6.PubMedGoogle Scholar
  114. 114.
    Handman E, Mitchell GF, Goding JW. Identification and characterization of protein antigens of Leishmania tropica isolates. J Immunol. 1981;126:508–12.PubMedGoogle Scholar
  115. 115.
    Saravia NG, Gemmell MA, Nance SL, Anderson NL. Two-dimensional electrophoresis used to differentiate the causal agents of American tegumentary leishmaniasis. Clin Chem. 1984;30:2048–52.PubMedGoogle Scholar
  116. 116.
    Fong D, Chang KP. Tubulin biosynthesis in the developmental cycle of a parasitic protozoan, Leishmania mexicana: changes during differentiation of motile and nonmotile stages. Proc Natl Acad Sci USA. 1981;78:7624–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Arrebola R, Olmo A, Reche P, Garvey EP, et al. Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmania cells. J Biol Chem. 1994;269:10590–6.PubMedGoogle Scholar
  118. 118.
    Görg A, Postel W, Günther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 1988;9:531–46.PubMedCrossRefGoogle Scholar
  119. 119.
    Matsudaira PT. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987;262:10035–8.PubMedGoogle Scholar
  120. 120.
    Carrette O, Burkhard PR, Sanchez JC, Hochstrasser DF. State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nat Protoc. 2006;1:812–23.PubMedCrossRefGoogle Scholar
  121. 121.
    Rabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics. 2010;73:2064–77.PubMedCrossRefGoogle Scholar
  122. 122.
    Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404:939–65.PubMedCrossRefGoogle Scholar
  123. 123.
    Duncan MW, Aebersold R, Caprioli RM. The pros and cons of peptide-centric proteomics. Nat Biotechnol. 2010;28:659–64.PubMedCrossRefGoogle Scholar
  124. 124.
    Biyani N, Singh AK, Mandal S, Chawla B. Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol Biochem Parasitol. 2011;179:91–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;14:35–48.PubMedCrossRefGoogle Scholar
  126. 126.
    Wiśniewski JR, Hein M, Cox J, Mann M. A “Proteomic Ruler” for protein copy number and concentration estimation without spike-in standards. Mol Cell Proteomics. 2014;13:3497–506.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Reddy PJ, Jain R, Paik YK, Downey R, et al. Personalized medicine in the age of pharmacoproteomics: a close up on India and need for social science engagement for responsible innovation in post-proteomic biology. Curr Pharmacogenomics Person Med. 2011;9:67–75.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Matthews H, Hanison J, Nirmalan N. “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes. 2016;4:E28.PubMedCrossRefGoogle Scholar
  129. 129.
    Goldstein RL, Yang SN, Taldone T, Chang B, et al. Pharmacoproteomics identifies combinatorial therapy targets for diffuse large B cell lymphoma. J Clin Invest. 2015;125:4559–71.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Shu S, Lin CY, He HH, Witwicki RM, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413–7.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Detke S, Katakura K, Chang KP. DNA amplification in arsenite resistant Leishmania. Exp Cell Res. 1989;180:161–70.PubMedCrossRefGoogle Scholar
  132. 132.
    Ouellette M, Hettema E, Wust D, Fase-Fowler F, et al. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J. 1991;10:1009–16.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Callahan HL, Beverley SM. Heavy metal resistance: A new role for P-glycoproteins in Leishmania. J Biol Chem. 1991;266:18427–30.PubMedGoogle Scholar
  134. 134.
    Bello AR, Nare B, Freedman D, Hardy L, et al. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA. 1994;91:11442–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Prasad V, Kaur J, Dey CS. Arsenite-resistant Leishmania donovani promastigotes express an enhanced membrane P-type adenosine triphosphatase activity that is sensitive to verapamil treatment. Parasitol Res. 2000;86:661–4.PubMedCrossRefGoogle Scholar
  136. 136.
    Richard D, Kündig C, Ouellette M. A new type of high affinity folic acid transporter in the protozoan parasite Leishmania and deletion of its gene in methotrexate-resistant cells. J Biol Chem. 2002;277:29460–7.PubMedCrossRefGoogle Scholar
  137. 137.
    HaimeurA GC, Pilote S, Mukhopadhyay R, Rosen BP, et al. Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Mol Microbiol. 1999;34:726–35.CrossRefGoogle Scholar
  138. 138.
    Brochu C, Wang J, Roy G, Messier N, et al. Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother. 2003;47:3073–9.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Ouellette M, Drummelsmith J, Papadopoulou B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat. 2004;7:257–66.PubMedCrossRefGoogle Scholar
  140. 140.
    Ashutosh SS, Goyal N. Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol. 2007;56:143–53.PubMedCrossRefGoogle Scholar
  141. 141.
    Ouellette M, Borst P. Drug resistance and P-glycoprotein gene amplification in the protozoan parasite Leishmania. Res Microbiol. 1991;142:737–46.PubMedCrossRefGoogle Scholar
  142. 142.
    Beverley SM. Gene amplification in Leishmania. Annu Rev Microbiol. 1991;45:417–44.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Dey S, Papadopoulou B, Haimeur A, Roy G, et al. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol. 1994;67:49–57.PubMedCrossRefGoogle Scholar
  144. 144.
    Dey S, Ouellette M, Lightbody J, Papadopoulou B, Rosen BP. An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA. 1996;93:2192–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Mukhopadhyay R, Dey S, Xu N, Gage D, et al. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci USA. 1996;93:10383–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Coderre JA, Beverley SM, Schimke RT, Santi DV. Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci USA. 1983;80:2132–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Croft SL, Coombs GH. Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19:502–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Thakur CP, Sinha GP, Pandey AK, Kumar N, et al. Do the diminishing efficacy and increasing toxicity of sodium stibogluconate in the treatment of visceral leishmaniasis in Bihar, India, justify its continued use as a first-line drug? An observational study of 80 cases. Ann Trop Med Parasitol. 1998;92:561–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Sundar S, More DK, Singh MK, Singh VP, et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis. 2000;31:1104–1107s.PubMedCrossRefGoogle Scholar
  150. 150.
    Perry MR, Wyllie S, Prajapati VK, Feldmann J, et al. Visceral leishmaniasis and arsenic: an ancient poison contributing to antimonial treatment failure in the Indian subcontinent? PLoS Negl Trop Dis. 2011;5:e1227.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Berman JD, Chulay JD, Hendricks LD, Oster CN. Susceptibility of clinically sensitive and resistant Leishmania to pentavalent antimony in vitro. Am J Trop Med Hyg. 1982;31:459–65.PubMedCrossRefGoogle Scholar
  152. 152.
    Navin TR, Arana BA, Arana FE, Berman JD, et al. Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. J Infect Dis. 1992;165:528–34.PubMedCrossRefGoogle Scholar
  153. 153.
    Burguera J, Burguera M, Petit de Pena Y, Lugo A, et al. Selective determination of antimony(III) and antimony(V) in serum and urine and of total antimony in skin biopsies of patients with cutaneous leishmaniasis treated with meglumine antimoniate. Trace Elem Med. 1993;10:66–70.Google Scholar
  154. 154.
    Callahan HL, Portal AC, Devereaux R, Grogl M. An axenic amastigote system for drug screening. Antimicrob Agents Chemother. 1997;41:818–22.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Ephros M, Bitnun A, Shaked P, Waldman E, Zilberstein D. Stage-specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes. Antimicrob Agents Chemother. 1999;43:278–82.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D. Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem. 2001;276:3971–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Denton H, McGregor JC, Coombs GH. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J. 2004;381:405–12.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Zhou Y, Messier N, Ouellette M, Rosen BP, et al. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem. 2004;279:37445–51.PubMedCrossRefGoogle Scholar
  159. 159.
    Mukhopadhyay R, Bisacchi D, Zhou Y, Armirotti A, et al. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major. J Mol Biol. 2009;386:1229–39.PubMedCrossRefGoogle Scholar
  160. 160.
    Frézard F, Demicheli C, Ferreira CS, Costa MA. Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob Agents Chemother. 2001;45:913–6.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, et al. Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem. 1998;273:24737–43.PubMedCrossRefGoogle Scholar
  162. 162.
    Gourbal B, Sonuc N, Bhattacharjee H, Legare D, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004;279:31010–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Decuypere S, Rijal S, Yardley V, De Doncker S, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005;49:4616–21.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005;57:1690–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004;279:39925–32.PubMedCrossRefGoogle Scholar
  166. 166.
    Berman JD, Waddell D, Hanson BD. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrob Agents Chemother. 1985;27:916–20.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Sereno D, Holzmuller P, Mangot I, Cuny G. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother. 2001;45:2064–9.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Sudhandiran G, Shaha C. Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem. 2003;278:25120–32.PubMedCrossRefGoogle Scholar
  169. 169.
    Grondin K, Haimeur A, Mukhopadhyay R, Rosen BP, et al. Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J. 1997;16:3057–65.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Haimeur A, Brochu C, Genest P, Papadopoulou B, et al. Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol. 2000;108:131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Callahan HL, Roberts WL, Rainey PM, Beverley SM. The PGPA gene of Leishmania major mediates antimony (SbIII) resistance by decreasing influx and not by increasing efflux. Mol Biochem Parasitol. 1994;68:145–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Légaré D, Richard D, Mukhopadhyay R, Stierhof YD, et al. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276:26301–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Mittal MK, Rai S, Ravinder GS, Sundar S, et al. Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg. 2007;76:681–8.PubMedCrossRefGoogle Scholar
  174. 174.
    Goyeneche-Patino DA, Valderrama L, Walker J, Saravia NG. Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob Agents Chemother. 2008;52:4503–6.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Mukherjee A, Padmanabhan PK, Singh S, Roy G, et al. Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother. 2007;59:204–11.PubMedCrossRefGoogle Scholar
  176. 176.
    Mandal G, Sarkar A, Saha P, Singh N, et al. Functionality of drug efflux pumps in antimonial resistant Leishmania donovani field isolates. Indian J Biochem Biophys. 2009;46:86–92.PubMedGoogle Scholar
  177. 177.
    Monte-Neto R, Laffitte MC, Leprohon P, Reis P, et al. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS Negl Trop Dis. 2015;9:e0003476.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Hefnawy A, Berg M, Dujardin JC, De Muylder G. Exploiting knowledge on Leishmania drug resistance to support the quest for new drugs. Trends Parasitol. 2017;33:162–74.PubMedCrossRefGoogle Scholar
  179. 179.
    Jardim A, Hanson S, Ullman B, McCubbin WD, et al. Cloning and structure-function analysis of the Leishmania donovani kinetoplastid membrane protein-11. Biochem J. 1995;305:315–20.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Fuertes MA, Berberich C, Lozano RM, Gimenez-Gallego G, et al. Folding stability of the kinetoplastid membrane protein-11 (KMP-11) from Leishmania infantum. Eur J Biochem. 1999;260:559–67.PubMedCrossRefGoogle Scholar
  181. 181.
    Lee N, Bertholet S, Debrabant A, Muller J, et al. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ. 2002;9:53–64.PubMedCrossRefGoogle Scholar
  182. 182.
    Cohen-Saidon C, Carmi I, Keren A, Razin E. Antiapoptotic function of Bcl-2 in mast cells is dependent on its association with heat shock protein 90. Blood. 2006;107:1413–20.PubMedCrossRefGoogle Scholar
  183. 183.
    Das S, Shah P, Tandon R, Yadav NK, et al. Over-expression of cysteine leucine rich protein is related to SAG resistance in clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2015;9:e0003992.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Das S, Shah P, Baharia RK, Tandon R, et al. Over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2013;7:e2527.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Dridi L, Ahmed Ouameur A, Ouellette M. High affinity S-Adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopterin transporter (FBT) family. J Biol Chem. 2010;285:19767–75.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Vickers TJ, Beverley SM. Folate metabolic pathways in Leishmania. Essays Biochem. 2011;51:63–80.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Wiśniewski JR, Zougman A, Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res. 2009a;8:5674–8.PubMedCrossRefGoogle Scholar
  188. 188.
    Wiśniewski JR, Duś-Szachniewicz K, Ostasiewicz P, Ziółkowski P, et al. Absolute proteome analysis of colorectal mucosa, adenoma, and cancer reveals drastic changes in fatty acid metabolism and plasma membrane transporters. J Proteome Res. 2015;14:4005–18.PubMedCrossRefGoogle Scholar
  189. 189.
    Vildhede A, Wiśniewski JR, Norén A, Karlgren M, et al. Comparative proteomic analysis of human liver tissue and isolated hepatocytes with a focus on proteins determining drug exposure. J Proteome Res. 2015;14:3305–14.PubMedCrossRefGoogle Scholar
  190. 190.
    Tandon R, Chandra S, Baharia RK, Das S, et al. Characterization of the proliferating cell nuclear antigen of Leishmania donovani clinical isolates and its association with antimony resistance. Antimicrob Agents Chemother. 2014;58:2997–3007.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Parodi-Talice A, Durán R, Arrambide N, Prieto V, et al. Proteome analysis of the causative agent of Chagas disease: Trypanosoma cruzi. Int J Parasitol. 2004;34:881–6.PubMedCrossRefGoogle Scholar
  192. 192.
    Croft SL, Neal RA, Pendergast W, Chan JH. The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol. 1987;36:2633–6.PubMedCrossRefGoogle Scholar
  193. 193.
    Kuhlencord A, Maniera T, Eibl H, Unger C. Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother. 1992;36:1630–4.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Sundar S, Jha TK, Thakur CP, Engel J, et al. Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med. 2002;347:1739–46.PubMedCrossRefGoogle Scholar
  195. 195.
    Soto J, Soto P. Miltefosine: oral treatment of leishmaniasis. Expert Rev Anti Infect Ther. 2006;4:177–85.PubMedCrossRefGoogle Scholar
  196. 196.
    Sundar S, Mondal D, Rijal S, Bhattacharya S, et al. Implementation research to support the initiative on the elimination of kala azar from Bangladesh, India and Nepal–the challenges for diagnosis and treatment. Trop Med Int Health. 2008;13:2–5.PubMedCrossRefGoogle Scholar
  197. 197.
    World Health Organization. Regional strategic framework for elimination of Kala-azar from the South-East Asia region (2005–2015). New Delhi: WHO Regional Office for South-East Asia; 2005.Google Scholar
  198. 198.
    Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366:1561–77.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Calvopina M, Gomez EA, Sindermann H, Cooper PJ, et al. Relapse of new world diffuse cutaneous leishmaniasis caused by Leishmania (Leishmania) mexicana after miltefosine treatment. Am J Trop Med Hyg. 2006;75:1074–7.PubMedCrossRefGoogle Scholar
  200. 200.
    Zerpa O, Ulrich M, Blanco B, Polegre M, et al. Diffuse cutaneous leishmaniasis responds to miltefosine but then relapses. Br J Dermatol. 2007;156:1328–35.PubMedCrossRefGoogle Scholar
  201. 201.
    Pandey BD, Pandey K, Kaneko O, Yanagi T, et al. Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg. 2009;80:580–2.PubMedCrossRefGoogle Scholar
  202. 202.
    Andrade HM, Toledo VP, Pinheiro MB, Guimarães TM, et al. Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (= L. chagasi) in Brazil. Vet Parasitol. 2011;181:83–90.PubMedCrossRefGoogle Scholar
  203. 203.
    Proverbio D, Spada E, Bagnagatti De Giorgi G, Perego R. Failure of miltefosine treatment in two dogs with natural Leishmania infantum infection. Case Rep Vet Med. 2014;640151.  https://doi.org/10.1155/2014/640151
  204. 204.
    Escobar P, Matu S, Marques C, Croft SL. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop. 2002;81:151–7.PubMedCrossRefGoogle Scholar
  205. 205.
    van Blitterswijk WJ, Verheij M. Anticancer alkylphospholipids: mechanisms of action, cellular sensitivity and resistance, and clinical prospects. Curr Pharm Des. 2008;14:2061–74.PubMedCrossRefGoogle Scholar
  206. 206.
    Paris C, Loiseau PM, Bories C, Bréard J. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2004;48:852–9.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Croft SL, Seifert K, Duchêne M. Antiprotozoal activities of phospholipid analogues. Mol Biochem Parasitol. 2003;126:165–72.PubMedCrossRefGoogle Scholar
  208. 208.
    Rakotomanga M, Blanc S, Gaudin K, Chaminade P, et al. Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2007;51:1425–30.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Pérez-Victoria FJ, Sánchez-Cañete MP, Castanys S, Gamarro F. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem. 2006a;281:23766–75.PubMedCrossRefGoogle Scholar
  210. 210.
    Sánchez-Cañete MP, Carvalho L, Pérez-Victoria FJ, Gamarro F, et al. Low plasma membrane expression of the miltefosine transport complex renders Leishmania braziliensis refractory to the drug. Antimicrob Agents Chemother. 2009;53:1305–13.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Pérez-Victoria FJ, Sánchez-Cañete MP, Seifert K, Croft SL, et al. Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use. Drug Resist Updat. 2006b;9:26–39.PubMedCrossRefGoogle Scholar
  212. 212.
    Montero-Lomelí M, Morais BL, Figueiredo DL, Neto DC, et al. The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae. J Biol Chem. 2002;277:21542–8.PubMedCrossRefGoogle Scholar
  213. 213.
    Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009b;6:359–62.PubMedCrossRefGoogle Scholar
  214. 214.
    Priotto G, Kasparian S, Mutombo W, Ngouama D, et al. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet. 2009;374:56–64.PubMedCrossRefGoogle Scholar
  215. 215.
    Gygi SP, Corthals GL, Zhang Y, Rochon Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 2000;97:9390–5.PubMedCrossRefGoogle Scholar
  216. 216.
    Junqueira M, Spirin V, Santana Balbuena T, Waridel P, et al. Separating the wheat from the chaff: unbiased filtering of background tandem mass spectra improves protein identification. J Proteome Res. 2008;7:3382–95.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Lye LF, Owens K, Shi H, Murta SM, et al. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6:e1001161.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Carter KC, Hutchison S, Henriquez FL, Légaré D, et al. Resistance of Leishmania donovani to sodium stibogluconate is related to the expression of host and parasite gamma-glutamylcysteine synthetase. Antimicrob Agents Chemother. 2006;50:88–95.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Araujo RP, Liotta LA, Petricoin EF. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov. 2007;6:871–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Leonardo Saboia-Vahia
    • 1
    • 2
  • Jose Batista de Jesus
    • 3
  • Patricia Cuervo
    • 1
  1. 1.Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZRio de JaneiroBrasil
  2. 2.Laboratório de Doenças Infecto-Parasitárias, Universidade Federal de São João del ReiDivinópolisBrasil
  3. 3.Departamento de Medicina, Universidade Federal de São João del ReiSão João del ReiBrasil

Personalised recommendations