On the Tractability of (ki)-Coloring

  • Saurabh Joshi
  • Subrahmanyam KalyanasundaramEmail author
  • Anjeneya Swami Kare
  • Sriram Bhyravarapu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10743)


In an undirected graph, a proper (ki)-coloring is an assignment of a set of k colors to each vertex such that any two adjacent vertices have at most i common colors. The (ki)-coloring problem is to compute the minimum number of colors required for a proper (ki)-coloring. This is a generalization of the classic graph coloring problem. Majumdar et al. [CALDAM 2017] studied this problem and showed that the decision version of the (ki)-coloring problem is fixed parameter tractable (FPT) with tree-width as the parameter. They asked if there exists an FPT algorithm with the size of the feedback vertex set (FVS) as the parameter without using tree-width machinery. We answer this in positive by giving a parameterized algorithm with the size of the FVS as the parameter. We also give a faster and simpler exact algorithm for \((k, k-1)\)-coloring, and make progress on the NP-completeness of specific cases of (ki)-coloring.



The authors would like to thank the anonymous reviewer for helpful comments, and pointing out a flaw in the proof of Theorem 12 in an earlier version of the paper.


  1. 1.
    Méndez-Díaz, I., Zabala, P.: A generalization of the graph coloring problem. Investig. Oper. 8, 167–184 (1999)Google Scholar
  2. 2.
    Stahl, S.: \(n\)-tuple colorings and associated graphs. J. Comb. Theor. Ser. B 20(2), 185–203 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bollobás, B., Thomason, A.: Set colourings of graphs. Discrete Math. 25(1), 21–26 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Klostermeyer, W., Zhang, C.Q.: \(n\)-tuple coloring of planar graphs with large odd girth. Graphs Combinatorics 18(1), 119–132 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Šparl, P., Žerovnik, J.: A note on \(n\)-tuple colourings and circular colourings of planar graphs with large odd girth. Int. J. Comput. Math. 84(12), 1743–1746 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Irving, R.W.: NP-completeness of a family of graph-colouring problems. Discrete Appl. Math. 5(1), 111–117 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Marx, D.: Graph colouring problems and their applications in scheduling. Period. Polytech. Electr. Eng. 48(1–2), 11–16 (2004)Google Scholar
  8. 8.
    Beideman, C., Blocki, J.: Set families with low pairwise intersection. arXiv preprint arXiv:1404.4622 (2014)
  9. 9.
    Brigham, R.C., Dutton, R.D.: Generalized \(k\)-tuple colorings of cycles and other graphs. J. Comb. Theor. Ser. B 32(1), 90–94 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bonomo, F., Durán, G., Koch, I., Valencia-Pabon, M.: On the \((k, i)\)-coloring of cacti and complete graphs. In: Ars Combinatoria (2014)Google Scholar
  11. 11.
    Johnson, S.: A new upper bound for error-correcting codes. IRE Trans. Inf. Theor. 8(3), 203–207 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Majumdar, D., Neogi, R., Raman, V., Tale, P.: Exact and parameterized algorithms for \((k, i)\)-coloring. In: Third International Conference on Algorithms and Discrete Applied Mathematics, CALDAM 2017, India, pp. 281–293 (2017)Google Scholar
  13. 13.
    Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  14. 14.
    Jansen, B.M., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wu, Y.L., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth, one-shot pebbling, and related layout problems. J. Artif. Intell. Res. 49(1), 569–600 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2010). CrossRefzbMATHGoogle Scholar
  19. 19.
    Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3(1), 23–28 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Koivisto, M.: An \({O}^*(2^n)\) algorithm for graph coloring and other partitioning problems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science. FOCS 2006, Washington, D.C., pp. 583–590. IEEE Computer Society (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Saurabh Joshi
    • 1
  • Subrahmanyam Kalyanasundaram
    • 1
    Email author
  • Anjeneya Swami Kare
    • 1
  • Sriram Bhyravarapu
    • 1
  1. 1.Department of Computer Science and EngineeringIIT HyderabadSangareddyIndia

Personalised recommendations