Execution-Based Model Profiling

  • Alexandra MazakEmail author
  • Manuel Wimmer
  • Polina Patsuk-Bösch
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 307)


In model-driven engineering (MDE), models are mostly used in prescriptive ways for system engineering. While prescriptive models are indeed an important ingredient to realize a system, for later phases in the systems’ lifecycles additional model types are beneficial to use. Unfortunately, current MDE approaches mostly neglect the information upstream in terms of descriptive models from operations to (re)design phases. To tackle this limitation, we propose execution-based model profiling as a continuous process to improve prescriptive models at design-time through runtime information. This approach incorporates knowledge in terms of model profiles from execution logs of the running system. To accomplish this, we combine techniques of process mining with runtime models of MDE. In the course of a case study, we make use of a traffic light system example to demonstrate the feasibility and benefits of the introduced execution-based model profiling approach.



The authors are affiliated with the Christian Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT) at TU Wien, funded by the Austrian Federal Ministry of Science, Research, and Economy (BMWFW) and the National Foundation of Research, Technology and Development (CDG). Furthermore, the authors would thank LieberLieber Software GmbH for the provisioning of the traffic light example.


  1. 1.
    Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J. 24, 557–584 (2015)CrossRefGoogle Scholar
  2. 2.
    Giles, C.L., Miller, C.B., Dong, C., Hsing-Hen, C., Guo-Zeng, S., Yee-Chun, L.: Learning and extracting finite state automata with second-order recurrent neural networks. Neural Comput. 4(3), 393–405 (1992)CrossRefGoogle Scholar
  3. 3.
    Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice. Morgan & Claypool, San Rafael (2012)Google Scholar
  4. 4.
    Blair, G., Bencomo, N., France, R.B.: Models@run.time. IEEE Comput. 42, 22–27 (2009)CrossRefGoogle Scholar
  5. 5.
    Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009). Scholar
  6. 6.
    Dallmeier, V., Knopp, N., Mallon, C., Fraser, G., Hack, S., Zeller, A.: Automatically generating test cases for specification mining. IEEE TSE 38, 243–257 (2012)Google Scholar
  7. 7.
    Das, N., Ganesan, S., Bagherzadeh, J.M., Hili, N., Dingel, J.: Supporting the model-driven development of real-time embedded systems with run-time monitoring and animation via highly customizable code generation. In: MoDELS (2016)Google Scholar
  8. 8.
    Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Systems: Bridging People and Software Through Process Technology. Wiley, New York (2005)CrossRefGoogle Scholar
  9. 9.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34 (1996)Google Scholar
  10. 10.
    Hartmann, T., Moawad, A., Fouquet, F., Nain, G., Klein, J., Le Traon, Y.: Stream my models: Reactive peer-to-peer distributed models@run.time. In: MoDELS (2015)Google Scholar
  11. 11.
    Heldal, R., Pelliccione, P., Eliasson, U., Lantz, J., Derehag, J., Whittle, J.: Descriptive vs prescriptive models in industry. In: MoDELS (2016)Google Scholar
  12. 12.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci. Comput. Program. 72, 31–39 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kühne, T.: Unifying explanatory and constructive modeling. In: MoDELS (2016)Google Scholar
  14. 14.
    de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-specific meta-modelling languages. Softw. Syst. Model. 14, 429–459 (2015)CrossRefGoogle Scholar
  15. 15.
    Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley, Boston (2005)Google Scholar
  16. 16.
    Mazak, A., Wimmer, M.: Towards liquid models: an evolutionary modeling approach. In: CBI (2016)Google Scholar
  17. 17.
    Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe, H., Wimmer, M.: ProMoBox: A framework for generating domain-specific property languages. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 1–20. Springer, Cham (2014). Scholar
  18. 18.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2007)CrossRefGoogle Scholar
  19. 19.
    Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009)CrossRefGoogle Scholar
  20. 20.
    Runeson, P., Höst, M., Sjoberg, D.: Guidelines for conducting and reporting case study research in software engineering. Empirical Softw. Eng. 14, 131–164 (2009)CrossRefGoogle Scholar
  21. 21.
    Seidl, M., Scholz, M., Huemer, C., Kappel, G.: UML Classroom: An Introduction to Object-Oriented Modeling. Springer, Heidelberg (2012). Scholar
  22. 22.
    Szvetits, M., Zdun, U.: Controlled experiment on the comprehension of runtime phenomena using models created at design time. In: MoDELS (2016)Google Scholar
  23. 23.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). Scholar
  24. 24.
    van der Aalst, W.M.P.: Process mining. Commun. ACM 55, 76–83 (2012)CrossRefGoogle Scholar
  25. 25.
    van der Aalst, W.M.P., Leemans, M.: Process mining in software systems: Discovering real-life business transactions and process models from distributed systems. In: MoDELS (2014)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Alexandra Mazak
    • 1
    Email author
  • Manuel Wimmer
    • 1
  • Polina Patsuk-Bösch
    • 1
  1. 1.Christian Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT), Institute of Software Technology and Interactive SystemsTU WienViennaAustria

Personalised recommendations