Advertisement

Finite Element Analysis Applications in Biomechanical Studies of the Knee Joint

  • Zahra Trad
  • Abdelwahed Barkaoui
  • Moez Chafra
  • João Manuel R. S. Tavares
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The development of sophisticated 3D FE models through MRI techniques enables us to precisely capture the patient-specific geometries of both hard and soft tissues in the region of interest (RoI), in order to more precisely simulate complicated tissue responses, thereby reflecting more realistic biomechanical behaviors. In the past decades, extensive studies have developed FE models and have coupled the FE model with in vivo kinematic data to analyse true tissue deformation (Halloran et al. in J Biomech 43:2810–2815, 2010). This has resulted in a more convincing simulation and prediction of the loading condition in FEA.

References

  1. Aalbersberg, S., et al. (2005). Orientation of tendons in vivo with active and passive knee muscles. Journal of Biomechanics, 38(9), 1780–1788.CrossRefGoogle Scholar
  2. Adouni, M., Shirazi-Adl, A., & Shirazi, R. (2012). Computational biodynamics of human knee joint in gait: From muscle forces to cartilage stresses. Journal of Biomechanics, 45(12), 2149–2156.CrossRefGoogle Scholar
  3. Ali, A. A., et al. (2016). Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee. Journal of Biomechanics, 49(2), 302–309.CrossRefGoogle Scholar
  4. Bae, J. Y., et al. (2012). Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Medical & Biological Engineering & Computing, 50(1), 53–60.MathSciNetCrossRefGoogle Scholar
  5. Baldwin, M. A., et al. (2012). Dynamic finite element knee simulation for evaluation of knee replacement mechanics. Journal of Biomechanics, 45(3), 474–483.CrossRefGoogle Scholar
  6. Beillas, P., et al. (2004). A new method to investigate in vivo knee behavior using a finite element model of the lower limb. Journal of Biomechanics, 37(7), 1019–1030.CrossRefGoogle Scholar
  7. Bendjaballah, M. Z., Shirazi-Adl, A., & Zukor, D. J. (1997). Finite element analysis of human knee joint in varus-valgus. Clinical Biomechanics, 12(3), 139–148.CrossRefGoogle Scholar
  8. Burkhart, T. A., Andrews, D. M., & Dunning, C. E. (2013). Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics, 46(9), 1477–1488.CrossRefGoogle Scholar
  9. Delp, S. L., et al. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950.CrossRefGoogle Scholar
  10. Dhaher, Y. Y., Kwon, T.-H., & Barry, M. (2010). The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. Journal of Biomechanics, 43(16), 3118–3125.CrossRefGoogle Scholar
  11. Donahue, T. L. H., et al. (2002). A finite element model of the human knee joint for the study of tibio-femoral contact. Journal of Biomechanical Engineering, 124(3), 273–280.CrossRefGoogle Scholar
  12. Ellis, B. J., et al. (2006). Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Journal of Orthopaedic Research, 24(4), 800–810.CrossRefGoogle Scholar
  13. Erdemir, A. (2013). Open knee: A pathway to community driven modeling and simulation in joint biomechanics. Journal of Medical Devices, 7(4), 40910.CrossRefGoogle Scholar
  14. Erdemir, A. (2016). Open knee: Open source modeling and simulation in knee biomechanics. Journal of Knee Surgery, 29(2), 107–116.Google Scholar
  15. Fernandes, D. J. C. (2014). Finite element analysis of the ACL-deficient Knee.Google Scholar
  16. Fukubayashi, T., & Kurosawa, H. (1980). The contact area and pressure distribution pattern of the knee: A study of normal and osteoarthrotic knee joints. Acta Orthopaedica Scandinavica, 51(1–6), 871–879.CrossRefGoogle Scholar
  17. Gardiner, J. C., & Weiss, J. A. (2003). Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. Journal of Orthopaedic Research, 21(6), 1098–1106.CrossRefGoogle Scholar
  18. Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society, Interface, 3(6), 15–35.CrossRefGoogle Scholar
  19. Godest, A. C., et al. (2002). Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. Journal of Biomechanics, 35(2), 267–275.CrossRefGoogle Scholar
  20. Guess, T. M., et al. (2010). A subject specific multibody model of the knee with menisci. Medical Engineering & Physics, 32(5), 505–515.CrossRefGoogle Scholar
  21. Halloran, J. P., Petrella, A. J., & Rullkoetter, P. J. (2005). Explicit finite element modeling of total knee replacement mechanics. Journal of Biomechanics, 38(2), 323–331.CrossRefGoogle Scholar
  22. Halloran, J. P., et al. (2010). Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. Journal of Biomechanics, 43(14), 2810–2815.CrossRefGoogle Scholar
  23. Halonen, K. S., et al. (2013). Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage—A 3D finite element study of stresses and strains in human knee joint. Journal of Biomechanics, 46(6), 1184–1192.CrossRefGoogle Scholar
  24. Hirokawa, S., & Tsuruno, R. (2000). Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. Journal of Biomechanics, 33(9), 1069–1077.CrossRefGoogle Scholar
  25. Kiapour, A. M., et al. (2014). The effect of ligament modeling technique on knee joint kinematics: a finite element study. Applied mathematics, 4(5A), 91.Google Scholar
  26. Li, G., Suggs, J., & Gill, T. (2002). The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: A three-dimensional computational simulation. Annals of Biomedical Engineering, 30(5), 713–720.CrossRefGoogle Scholar
  27. Li, G., et al. (1999). A validated three-dimensional computational model of a human knee joint. Journal of Biomechanical Engineering, 121(6), 657–662.CrossRefGoogle Scholar
  28. Limbert, G., Middleton, J., & Taylor, M. (2004). Finite element analysis of the human ACL subjected to passive anterior tibial loads. Computer Methods in Biomechanics and Biomedical Engineering, 7(1), 1–8.CrossRefGoogle Scholar
  29. Łuczkiewicz, P., et al. (2016). The influence of articular cartilage thickness reduction on meniscus biomechanics. PLoS One, 11(12), e0167733.CrossRefGoogle Scholar
  30. Marlow, R. S. (2003). A general first-invariant hyperelastic constitutive model. Constitutive Models for Rubber, 157–160.Google Scholar
  31. Meakin, J. R., et al. (2003). Finite element analysis of the meniscus: The influence of geometry and material properties on its behaviour. The Knee, 10(1), 33–41.CrossRefGoogle Scholar
  32. Moglo, K. E., & Shirazi-Adl, A. (2003). Biomechanics of passive knee joint in drawer: Load transmission in intact and ACL-deficient joints. The Knee, 10(3), 265–276.CrossRefGoogle Scholar
  33. Mononen, M. E., et al. (2012). Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—A 3D finite element analysis. Journal of Biomechanics, 45(3), 579–587.CrossRefGoogle Scholar
  34. Mootanah, R., et al. (2014). Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis. Computer Methods in Biomechanics and Biomedical Engineering, 17(13), 1502–1517.CrossRefGoogle Scholar
  35. Park, H.-S., et al. (2010). A knee-specific finite element analysis of the human anterior cruciate ligament impingement against the femoral intercondylar notch. Journal of Biomechanics, 43(10), 2039–2042.CrossRefGoogle Scholar
  36. Peña, E., Calvo, B., et al. (2005). Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clinical Biomechanics, 20(5), 498–507.CrossRefGoogle Scholar
  37. Peña, E., et al. (2006a). A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics, 39(9), 1686–1701.CrossRefGoogle Scholar
  38. Peña, E., et al. (2006b). Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. Journal of Orthopaedic Research, 24(5), 1001–1010.CrossRefGoogle Scholar
  39. Peña, E., et al. (2007). Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Computers in Biology and Medicine, 37(3), 376–387.CrossRefGoogle Scholar
  40. Peña, E., et al. (2008). Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Computers in Biology and Medicine, 38(1), 69–81.CrossRefGoogle Scholar
  41. Penrose, J. M. T., et al. (2002). Development of an accurate three-dimensional finite element knee model. Computer Methods in Biomechanics & Biomedical Engineering, 5(4), 291–300.CrossRefGoogle Scholar
  42. Pioletti, D. P., et al. (1998). Viscoelastic constitutive law in large deformations: Application to human knee ligaments and tendons. Journal of Biomechanics, 31(8), 753–757.CrossRefGoogle Scholar
  43. Ramaniraka, N. A., Terrier, A., et al. (2005). Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clinical Biomechanics, 20(4), 434–442.CrossRefGoogle Scholar
  44. Ramaniraka, N. A., et al. (2007). Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. Clinical Biomechanics, 22(3), 336–343.CrossRefGoogle Scholar
  45. Sakai, N., et al. (1996). Quadriceps forces and patellar motion in the anatomical model of the patellofemoral joint. The Knee, 3(1–2), 1–7.CrossRefGoogle Scholar
  46. Sathasivam, S., & Walker, P. S. (1997). A computer model with surface friction for the prediction of total knee kinematics. Journal of Biomechanics, 30(2), 177–184.CrossRefGoogle Scholar
  47. Segal, N. A., et al. (2009). Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. Journal of Orthopaedic Research, 27(12), 1562–1568.CrossRefGoogle Scholar
  48. Smith, C. R., et al. (2016). The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement. Journal of Biomechanical Engineering, 138(2), 21017.CrossRefGoogle Scholar
  49. Song, Y., et al. (2004). A three-dimensional finite element model of the human anterior cruciate ligament: A computational analysis with experimental validation. Journal of Biomechanics, 37(3), 383–390.CrossRefGoogle Scholar
  50. Tanska, P., Mononen, M. E., & Korhonen, R. K. (2015). A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking. Journal of Biomechanics, 48(8), 1397–1406.CrossRefGoogle Scholar
  51. Wan, C., Hao, Z., & Wen, S. (2013). The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: A finite element study. Journal of Biomechanical Engineering, 135(4), 41002.CrossRefGoogle Scholar
  52. Wang, Y., Fan, Y., & Zhang, M. (2014). Comparison of stress on knee cartilage during kneeling and standing using finite element models. Medical Engineering & Physics, 36(4), 439–447.CrossRefGoogle Scholar
  53. Xie, F., et al. (2009). A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament. Journal of Biomechanical Engineering, 131(12), 121007.CrossRefGoogle Scholar
  54. Yao, J., Funkenbusch, P. D., et al. (2006a). Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. Journal of Biomechanical Engineering, 128(3), 399–408.CrossRefGoogle Scholar
  55. Yao, J., Snibbe, J., et al. (2006b). Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading: A finite element analysis with image-based experimental validation. Journal of Biomechanical Engineering, 128(1), 135–141.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Zahra Trad
    • 1
  • Abdelwahed Barkaoui
    • 1
  • Moez Chafra
    • 2
    • 3
  • João Manuel R. S. Tavares
    • 4
  1. 1.LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), Ecole Nationale d’Ingénieurs de TunisUniversité de Tunis El ManarTunisTunisie
  2. 2.Laboratoire de Systèmes et de Mécanique AppliquéeEcole Polytechnique de TunisTunisTunisie
  3. 3.IPEIEMUniversité de Tunis El ManarTunisTunisie
  4. 4.Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations