Surface-Contacts During Mating in Beetles: Stiffness Gradient of the Beetle Penis Facilitates Propulsion in the Spiraled Female Spermathecal Duct

  • Yoko Matsumura
  • Alexander E. Kovalev
  • Alexander E. Filippov
  • Stanislav N. Gorb
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 10)

Abstract

Substantial diversity of genitalia found in animals is regarded as a result of sexual selection. This means that surface interactions of the male and female genitalia during copulation play a key role in its evolution. However morpho/physical diversity and biomechanics of the structures in sexual intercourse are not well linked. Here we estimated relative stiffness of hyper-elongated male and female genitalia in cassidine beetles based on material composition gradient analyses and numerically modeled this system to gain insights about how genital features affect penile propulsion. The material composition analyses suggested that only the hyper-elongated penis has stiffness gradient, the tip of the penis could be softer than the rest of it, and the highly spiraled female spermathecal duct is constantly stiffer than the penis. The numerical stimulation with different conditions of the penile stiffness showed effects of stiffness gradients of the penises on its propulsion into the female duct. This simulation demonstrated that the realistic type of the stiffness gradients aids in faster propulsion than other types and a constantly rigid penis causes largest local deviation of the female duct. It seems that the soft end of the penis is flexible enough to quickly adjust small curvature in the spermathecal duct, and at the same time, it may be strongly pushed by the rigid basal part. This study indicates that previously ignored physical properties of genital materials are of crucial importance in understanding physical interactions of sexes.

Notes

Acknowledgements

This book chapter is adapted from the publication Filippov et al. Stiffness gradient of the beetle penis facilitates propulsion in the spiraled female spermathecal duct, Sci. Rep. 7, 27608; doi:  https://doi.org/10.1038/srep27608 (2016). This study was supported by the Yamada Science foundation and the Japanese Society of the promotion of Science (postdoctoral fellowship, grant no. 15 J03484) to YM. We thank J. Michels and E. Appel (Kiel University, Germany) for CLSM training and comments on the draft, H. Pohl (Jena University, Germany) for assistance with material collection in the field, N. Jacky (Kiel University, Germany) for the help with the rearing of beetles in the lab, and R. Niwayama (EMBL Heidelberg, Germany) for discussion on computer simulations.

References

  1. Ah-King, M., Barron, A. B., & Herberstein, M. E. (2014). Genital evolution: Why are females still understudied? PLoS Biology, 12, e1001851.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnqvist, G. (1998). Comparative evidence for the evolution of genitalia by sexual selection. Nature, 393, 784–786.CrossRefGoogle Scholar
  3. Arnqvist, G., & Danielsson, I. (1999). Copulatory behavior, genital morphology and male fertilization success in water striders. Evolution, 5, 147–156.CrossRefGoogle Scholar
  4. Arnqvist, G., & Rowe, L. (1995). Sexual conflict and arms races between the sexes: A morphoogical adaptation for contral of mating in a female insect. Proceedings of the Royal Society B: Biological Sciences, 261, 123–127.CrossRefGoogle Scholar
  5. Brennan, P. L. R., Prum, R. O., McCracken, K. G., Sorenson, M. D., Wilson, R. E., & Birkhead, T. R. (2007). Coevolution of male and female genital morphology in waterfowl. PLoS One, 5, e418.CrossRefGoogle Scholar
  6. Cerkvenika, U., van de Straata, B., Gusseklooa, S. W. S., & van Leeuwena, J. L. (2017). Mechanisms of ovipositor insertion and steering of a parasitic wasp. Proceedings of the National Academy of Sciences of the United States of America.  https://doi.org/10.1073/pnas.1706162114.
  7. Cordoba-Aguilar, A. (2005). Possible coevolution of male and female genital form and function in a calopterygid damselfly. Journal of Evolutionary Biology, 18, 132–137.CrossRefPubMedGoogle Scholar
  8. Dougherty, L. R., Rahman, I. A., Burdfield-Steel, E. R., Greenway, E. V., & Shuker, D. M. (2015). Experimental reduction of intromittent organ length reduces male reproductive success in a bug. Proceedings of the Royal Society B: Biological Sciences, 282, 20150724.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eberhard, W. G. (1985). Sexual selection and animal genitalia. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  10. Filippov, A. E., Kovalev, A. E., Matsumura, Y., & Gorb, S. N. (2015). Male penile propulsion into spiraled spermathecal ducts of female chrysomelid beetles: A numerical simulation approach. Journal of Theoretical Biology, 384, 140–146.CrossRefPubMedGoogle Scholar
  11. Gorb, S. N., & Beutel, R. G. (2001). Evolution of locomotory attachment pads of hexapods. Naturwissenschaften, 88, 530–534.CrossRefPubMedGoogle Scholar
  12. Gorb, S. N., Beutel, R. G., Gorb, E. V., Jiao, Y., Kastner, V., Niederegger, S., Popov, V. L., Scherge, M., Schwarz, U., & Vötsch, W. (2002). Structural design and biomechanics of friction-based releasable attachment devices in insects. Integrative and Comparative Biology, 42, 1127–1139.CrossRefPubMedGoogle Scholar
  13. Gorb, S. N., & Filippov, A. E. (2014). Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects. Beilstein Journal of Nanotechnology, 5, 837–845.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Holwell, G. I., Winnick, C., Tregenza, T., & Herberstein, M. E. (2009). Genital shape correlates with sperm transfer success in the praying mantis Ciulfina klassi (Insecta: Mantodea). Behavioral Ecology and Sociobiology, 64, 617–625.CrossRefGoogle Scholar
  15. Hosken, D. J., & Stockley, P. (2004). Sexual selection and genital evolution. Trends in Ecology & Evolution, 19, 87–93.CrossRefGoogle Scholar
  16. House, C. M., & Simmons, L. W. (2003). Genital morphology and fertilization success in the dung beetle Onthophagus taurus: An example of sexually selected male genitalia. Proceedings of the Royal Society B: Biological Sciences, 270, 447–455.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kamimura, Y. (2013). Promiscuity and elongated sperm storage organs work cooperatively as a cryptic female choice mechanism in an earwig. Animal Behaviour, 85, 377–383.CrossRefGoogle Scholar
  18. Kelly, D. A. (2016). Intromittent organ morphology and biomechanics: Defining the physical challenges of copulation. Integrative and Comparative Biology, 56, 630–634.CrossRefPubMedGoogle Scholar
  19. van Lieshout, E., & Elgar, M. A. (2010). Longer exaggerated male genitalia confer defensive sperm-competitive benefits in an earwig. Evolutionary Ecology, 25, 351–362.CrossRefGoogle Scholar
  20. Macagno, A. L. M., Pizzo, A., Parzer, H. F., Palestrini, C., Rolando, A., & Moczek, A. P. (2011). Shape - but not size - codivergence between male and female copulatory structures in Onthophagus beetles. PLoS One, 6, e28893.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Matsumura, Y., Michels, J., Appel, E., & Gorb, S. N. (2017). Functional morphology and evolution of the hyper-elongated intromittent organ in Cassida leaf beetles (Coleoptera: Chrysomelidae: Cassidinae). Zoology, 120, 1–14.CrossRefPubMedGoogle Scholar
  22. Matsumura, Y., Yoshizawa, K., Machida, R., Mashimo, Y., Dallai, R., Gottardo, M., Kleinteich, T., Michels, J., Gorb, S. N., & Beutel, R. G. (2014). Two intromittent organs in Zorotypus caudelli (Insecta, Zoraptera): The paradoxical coexistence of an extremely long tube and a large spermatophore. Biological Journal of the Linnean Society, 112, 40–54.CrossRefGoogle Scholar
  23. Matushkina, N., & Gorb, S. N. (2007). Mechanical properties of the endophytic ovipositor in damselflies (Zygoptera, Odonata) and their oviposition substrates. Zoology, 110, 167–175.CrossRefPubMedGoogle Scholar
  24. Michels, J., Appel, E., & Gorb, S. N. (2016). Functional diversity of resilin in Arthropoda. Beilstein Journal of Nanotechnology, 7, 1241–1259.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Michels, J., & Gorb, S. N. (2012). Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. Journal of Microscopy, 245, 1–16.CrossRefPubMedGoogle Scholar
  26. Michels, J., Gorb, S. N., & Reinhardt, K. (2015). Reduction of female copulatory damage by resilin represents evidence for tolerance in sexual conflict. Journal of the Royal Society Interface, 12, 20141107.CrossRefPubMedCentralGoogle Scholar
  27. Michels, J., Vogt, J., & Gorb, S. N. (2012). Tools for crushing diatoms-opal teeth in copepods feature a rubber-like bearing composed of resilin. Scientific Reports, 2, 465.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miller, G. T., & Pitnck, S. (2002). Sperm-female coevolution in Drosophila. Science, 298, 1230–1233.CrossRefPubMedGoogle Scholar
  29. Peisker, H., Michels, J., & Gorb, S. N. (2013). Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nature Communications, 4, 1661.CrossRefPubMedGoogle Scholar
  30. Rodriguez, V. (1994). Function of the spermathecal muscle in Chelymorpha alternans Boheman (Coleoptera: Chrysomelidae: Cassidinae). Physiological Entomology, 19, 198–202.CrossRefGoogle Scholar
  31. Rodriguez, V. (1995). Relation of flagellum length to reproductive success in male Chelymorpha alternans Boheman (Coleoptera: Chrysomelidae: Cassidinae). The Coleopterists Bulletin, 49, 201–205.Google Scholar
  32. Rodriguez, V., Windsor, D. M., & Eberhard, W. G. (2004). Tortoise beetle genitalia and demonstrations of a sexually selected advantage for flagellum length in Chelymorpha alternans (Chrysomelidae, Cassidini, Stolaini). In P. Jolivet, J. A. Santiago-Blay, & M. Schmitt (Eds.), New developments in the biology of Chrysomelidae (pp. 739–748). The Hague: Academic Publisher.Google Scholar
  33. Rowe, L., & Arnqvist, G. (2012). Sexual selection and the evolution of genital shape and complexity in water striders. Evolution, 66, 40–54.CrossRefPubMedGoogle Scholar
  34. Sakurai, G., Himuro, C., & Kasuya, E. (2012). Intra-specific variation in the morphology and the benefit of large genital sclerites of males in the adzuki bean beetle (Callosobruchus chinensis). Journal of Evolutionary Biology, 25, 1291–1297.CrossRefPubMedGoogle Scholar
  35. Sentenská, L., Pekár, S., Lipke, E., Michalik, P., & Uhl, G. (2015). Female control of mate plugging in a female-cannibalistic spider (Micaria sociabilis). BMC Evolutionary Biology, 15, 18.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Simmons, L. W. (2014). Sexual selection and genital evolution. Austral Entomology, 53, 1–17.CrossRefGoogle Scholar
  37. Simmons, L. W., House, C. M., Hunt, J., & Garcia-Gonzalez, F. (2009). Evolutionary response to sexual selection in male genital morphology. Current Biology, 19, 1442–1446.CrossRefPubMedGoogle Scholar
  38. Tadler, A. (1999). Selection of a conspicuous male genitalic trait in the seedbug Lygaeus simulans. Proceedings of the Royal Society B: Biological Sciences, 266, 1773–1777.CrossRefPubMedCentralGoogle Scholar
  39. Tanabe, T., & Sota, T. (2013). Both male and female novel traits promote the correlated evolution of genitalia between the sexes in an arthropod. Evolution, 68, 441–452.CrossRefPubMedGoogle Scholar
  40. Udelson, D. (2007). Biomechanics of male erectile function. Journal of the Royal Society Interface, 4, 1031–1047.CrossRefPubMedCentralGoogle Scholar
  41. Villavaso, E. J. (1975). Functions of the spermathecal muscle of the boll weevil, Anthonomus grandis. Journal of Insect Physiology, 21, 1275–1278.CrossRefGoogle Scholar
  42. Willkommen, J., Michels, J., & Gorb, S. N. (2015). Functional morphology of the male caudal appendages of the damselfly Ischnura elegans (Zygoptera: Coenagrionidae). Arthropod Structure & Development, 44, 289–300.CrossRefGoogle Scholar
  43. Wulff, N. C., van de Kamp, T., dos Santos Rolo, T., Baumbach, T., & Lehmann, G. U. C. (2017). Copulatory courtship by internal genitalia in bushcrickets. Scientific Reports, 7, 42345.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Yoko Matsumura
    • 1
    • 2
  • Alexander E. Kovalev
    • 1
  • Alexander E. Filippov
    • 1
    • 3
  • Stanislav N. Gorb
    • 1
  1. 1.Department of Functional Morphology and Biomechanics, Zoological InstituteKiel UniversityKielGermany
  2. 2.Department of BiologyKeio UniversityYokohamaJapan
  3. 3.Department N5Donetsk Institute for Physics and EngineeringDonetskUkraine

Personalised recommendations