Advertisement

Shape-Aware Deep Convolutional Neural Network for Vertebrae Segmentation

  • S. M. Masudur Rahman Al ArifEmail author
  • Karen Knapp
  • Greg Slabaugh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10734)

Abstract

Shape is an important characteristic of an object, and a fundamental topic in computer vision. In image segmentation, shape has been widely used in segmentation methods, like the active shape model, to constrain a segmentation result to a class of learned shapes. However, to date, shape has been underutilized in deep segmentation networks. This paper addresses this gap by introducing a shape-aware term in the segmentation loss function. A deep convolutional network has been adapted in a novel cervical vertebrae segmentation framework and compared with traditional active shape model-based methods. The proposed framework has been trained on an augmented dataset of 26370 vertebrae and tested on 792 vertebrae collected from a total of 296 real-life emergency room lateral cervical X-ray images. The proposed framework achieved an average error of 1.11 pixels, signifying a 36% improvement over the traditional methods. The introduction of the novel shape-aware term in the loss function significantly improved the performance by further 12%, achieving an average error of only 0.99 pixel.

Keywords

Convolutional neural networks Vertebrae Segmentation Shape-aware X-rays 

Notes

Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research.

References

  1. 1.
    Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., et al. (eds.) Proceedings of the Neural Information Processing Systems - NIPS 2012, vol. 25, pp. 1097–1105 (2012)Google Scholar
  2. 2.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556
  3. 3.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2015, pp. 1–9. IEEE (2015)Google Scholar
  4. 4.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2016, pp. 770–778. IEEE (2016)Google Scholar
  5. 5.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)CrossRefGoogle Scholar
  6. 6.
    Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision - ICCV 2015, pp. 1529–1537. IEEE (2015)Google Scholar
  7. 7.
    Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision - ICCV 2015, pp. 1520–1528. IEEE (2015)Google Scholar
  8. 8.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  9. 9.
    BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_53 CrossRefGoogle Scholar
  10. 10.
    Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar
  11. 11.
    Pluempitiwiriyawej, C., Moura, J., Wu, Y.J., Ho, C.: STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans. Med. Imaging 24(5), 593–603 (2005)CrossRefGoogle Scholar
  12. 12.
    Weese, J., Wächter-Stehle, I., Zagorchev, L., Peters, J.: Shape-Constrained deformable models and applications in medical imaging. In: Li, S., Tavares, J.M.R.S. (eds.) Shape Analysis in Medical Image Analysis. LNCVB, vol. 14, pp. 151–184. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-03813-1_5 CrossRefGoogle Scholar
  13. 13.
    Farag, A.A., Shalaby, A., El Munim, H.A., Farag, A.: Variational shape representation for modeling, elastic registration and segmentation. In: Li, S., Tavares, J.M.R.S. (eds.) Shape Analysis in Medical Image Analysis. LNCVB, vol. 14, pp. 95–121. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-03813-1_3 CrossRefGoogle Scholar
  14. 14.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Understand. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  15. 15.
    Benjelloun, M., Mahmoudi, S., Lecron, F.: A framework of vertebra segmentation using the active shape model-based approach. Int. J. Biomed. Imaging 2011, 621905 (2011)CrossRefGoogle Scholar
  16. 16.
    Larhmam, M.A., Mahmoudi, S., Benjelloun, M.: Semi-automatic detection of cervical vertebrae in X-ray images using generalized hough transform. In: Proceedings of the 3rd IEEE International Conference on Image Processing Theory, Tools and Applications - IPTA 2012, pp. 396–401. IEEE (2012)Google Scholar
  17. 17.
    Roberts, M., Cootes, T., Adams, J.: Vertebral morphometry: semiautomatic determination of detailed shape from dual-energy X-ray absorptiometry images using active appearance models. Invest. Radiol. 41(12), 849–859 (2006)CrossRefGoogle Scholar
  18. 18.
    Roberts, M., Pacheco, E., Mohankumar, R., Cootes, T., Adams, J.: Detection of vertebral fractures in DXA VFA images using statistical models of appearance and a semi-automatic segmentation. Osteoporos. Int. 21(12), 2037–2046 (2010)CrossRefGoogle Scholar
  19. 19.
    Roberts, M.G., Cootes, T.F., Adams, J.E.: Automatic location of vertebrae on DXA images using random forest regression. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 361–368. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33454-2_45 CrossRefGoogle Scholar
  20. 20.
    Bromiley, P., Adams, J., Cootes, T.: Localisation of vertebrae on DXA images using constrained local models with random forest regression voting. In: Yao, J., et al. (eds.) Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 20, pp. 159–171. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14148-0_14 CrossRefGoogle Scholar
  21. 21.
    Al Arif, S.M.M.R., Gundry, M., Knapp, K., Slabaugh, G.: Improving an active shape model with random classification forest for segmentation of cervical vertebrae. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds.) CSI 2016. LNCS, vol. 10182, pp. 3–15. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55050-3_1 CrossRefGoogle Scholar
  22. 22.
    Bromiley, P.A., Kariki, E.P., Adams, J.E., Cootes, T.F.: Fully automatic localisation of vertebrae in CT images using random forest regression voting. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds.) CSI 2016. LNCS, vol. 10182, pp. 51–63. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55050-3_5 CrossRefGoogle Scholar
  23. 23.
    Mahmoudi, S., Lecron, F., Manneback, P., Benjelloun, M., Mahmoudi, S.: GPU-based segmentation of cervical vertebra in X-ray images. In: Proceedings of the IEEE International Conference on Cluster Computing Workshops and Posters - CLUSTER WORKSHOPS, pp. 1–8. IEEE (2010)Google Scholar
  24. 24.
    Ruder, S.: An overview of gradient descent optimization algorithms (2016). arXiv:1609.04747

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • S. M. Masudur Rahman Al Arif
    • 1
    Email author
  • Karen Knapp
    • 2
  • Greg Slabaugh
    • 1
  1. 1.City, University of LondonLondonUK
  2. 2.University of ExeterExeterUK

Personalised recommendations