Advertisement

Evolution of the Metabolic Network Leading to Ascorbate Synthesis and Degradation Using Marchantia polymorpha as a Model System

  • Jarrod Creameans
  • Karina Medina-Jiménez
  • Tanya Gómez-Díaz
  • Viankail Cedillo-Castelán
  • Dulce Flores-Martínez
  • Adolfo Aguilar-Cruz
  • Omar Altehua-Lopez
  • Grecia Lopez-Ramirez
  • Ana E. Dorantes-Acosta
  • John L. Bowman
  • Argelia LorenceEmail author
  • Mario A. Arteaga-Vazquez
Chapter

Abstract

In plants, l-ascorbic acid (AsA) is a functional enzyme cofactor, a major antioxidant, and a modulator of several biological processes including photosynthesis, photo-protection, cell wall growth and expansion, tolerance to environmental stresses, and synthesis of other molecules. One of the major roles of AsA in plants is detoxifying reactive oxygen species (ROS) such as singlet oxygen or peroxide radicals. ROS are produced when plants undergo biotic or abiotic stresses and if accumulated in high concentrations, can cause damage to macromolecules such as nucleic acids, membrane lipids, and proteins. Until now, little study has been done on ascorbate metabolism in liverworts. Bryophytes (liverworts, hornworts, and mosses) comprise the earliest diverging land plant lineages that came about approximately 360–450 million years ago between the Ordovician and Devonian periods. The ancient liverwort Marchantia polymorpha is an emergent model system specifically suited to use in the study of the evolution of different biosynthetic pathways. In this chapter, basal levels of both reduced and oxidized AsA in M. polymorpha are reported. Comparative and functional genomics experiments in combination with precursor feeding experiment are also discussed in order to provide valuable insights on the evolution of the AsA biosynthetic pathways.

Keywords

Marchantia Liverworts Vitamin C Ascorbic acid Ascorbate pathways Pathway evolution 

Notes

Acknowledgements

Work in the Lorence Laboratory was supported by a sub-award from the NIH Grant # P20 GM103429 from the IDeA Networks of Biomedical Research Excellence (INBRE) program of the National Institute of General Medical Sciences and by the Plant Imaging Consortium (PIC) funded by the National Science Foundation Award Numbers IIA-1430427 and IIA-1430428. AL also thanks startup funds provided by the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act. The Arteaga Group thanks support from the Universidad Veracruzana Cuerpo Académico CA-UVER-234 and funding provided by UCMEXUS-CONACYT grant 1994144OAC7, Consejo Nacional de Ciencia y Tecnología grants CB158550 and CB158561, Jeunes équipes associées à l’IRD (JEAI) grant EPIMAIZE, Royal Society Newton Advance Fellowship #RG79985 and Agropolis Foundation grant EPIMAIZE. G.L.R. is the recipient of a scholarship from the National System of Researchers (SNI) through the Universidad Veracruzana. D.F.M., A.A.C. and O.O.L. are recipients of a graduate scholarship from CONACYT. M.A.A.V. is the recipient of a Royal Society Research Fellowship. All members of the Arteaga Group would like to collectively thank Jocelyn E. Arteaga-Vázquez for her consistent help and support provided during the preparation of figures.J.L. Bowman thanks funds provided by the Australian Research Council DP160100892.

References

  1. Aboobucker SI, Suza WP, Lorence A (2017) Characterization of two Arabidopsis L-gulono-1,4-lactone oxidases, AtGulLO3 and AtGulLO5, involved in ascorbate biosynthesis. React Oxyg Spec 4(12):1–29Google Scholar
  2. Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Anisimova M, Gascuel O (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18(5):691–699CrossRefGoogle Scholar
  5. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552CrossRefPubMedGoogle Scholar
  6. Baig MM, Kelly S, Loewus F (1970) L-ascorbic acid biosynthesis in higher plants from L-gulono-1,4-lactone and L-galactono-7,4-lactone. Plant Physiol 46:277–280CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141:311CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berger F, Bowman JL, Kohchi T (2016) Marchantia. Curr Biol 26(5):R186–R187CrossRefPubMedGoogle Scholar
  9. Bowman JL (2016) A brief history of Marchantia from Greece to genomics. Plant Cell Physiol 57(2):210–229CrossRefPubMedGoogle Scholar
  10. Bowman JL, Araki T, Kohchi T (2016) Marchantia: past, present and future. Plant Cell Physiol 57(2):205–209CrossRefPubMedGoogle Scholar
  11. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J (2017) Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 171:287–304Google Scholar
  12. Choudhury FK, Riveri RM, Blumwald E, Mitler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867CrossRefPubMedGoogle Scholar
  13. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165CrossRefPubMedPubMedCentralGoogle Scholar
  14. Davey MW, Gilot C, Persiau G, Østergaard J, Han Y, Bauw GC, Van Montagu MC (1999) Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol 121:535–543CrossRefPubMedPubMedCentralGoogle Scholar
  15. Davey MW, Franck C, Keulemans J (2004) Distribution, developmental and stress responses of antioxidant metabolism in Malus. Plant Cell Environ 27:1309–1320CrossRefGoogle Scholar
  16. deLeeuw J (1992) Introduction to Akaike (1973) information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics, Springer series in statistics. Springer, New York, NYGoogle Scholar
  17. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37CrossRefPubMedPubMedCentralGoogle Scholar
  18. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285CrossRefPubMedGoogle Scholar
  19. Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64(1):33–53CrossRefPubMedGoogle Scholar
  20. Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272CrossRefPubMedGoogle Scholar
  21. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5(151):1–10Google Scholar
  22. Goodstein D, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186CrossRefPubMedGoogle Scholar
  23. Guindon S, Dufayard JE, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  24. Herrero-Martínez JM, Simó-Alfonso E, Deltoro VI, Calatayud A, Ramis-Ramos G (1998) Determination of L-ascorbic acid and total ascorbic acid in vascular and nonvascular plants by capillary zone electrophoresis. Anal Biochem 265:275–281CrossRefPubMedGoogle Scholar
  25. Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T (2009) L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Physiol Plant 136:139–149CrossRefPubMedGoogle Scholar
  26. Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78CrossRefGoogle Scholar
  27. Justi KC, Visentainer JV, Evelazio de Souza N, Matsushita M (2000) Nutritional composition and vitamin C stability in stored camucamu (Myrciaria dubia) pulp. Arch Latinoam Nutr 50:405–408PubMedGoogle Scholar
  28. Li M, Ma F, Liang D, Li J, Wang Y (2010) Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS One 5:e14281.  https://doi.org/10.1371/journal.pone.0014281 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lisko K, Siddique IA, Torres R, Lorence A (2014) Engineering elevated vitamin C in plants to improve their nutritional content, growth, and tolerance to abiotic stress. In Phytochemicals – biosynthesis, function and application R Jetter (ed). Recent Adv Phytochem 44: 109–128Google Scholar
  30. Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T, Shigeoka S (2010) The contribution of Arabidopsis homologs of L-gulono-1,4-lactone oxidase to the biosynthesis of ascorbic acid. Biosci Biotechnol Biochem. 74:1494–7Google Scholar
  31. Mellidou I, Keulemans J, Kanellis AK, Davey MW (2012) Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol 34:239CrossRefGoogle Scholar
  32. Oda K, Yamato T, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi K, Ohyama K (1992) Gene Organization Deduced from the Complete Sequence of Liverwort Marchantia-Polymorpha Mitochondrial-DNA. A Primitive Form of Plant Mitochondrial Genome. Journal of Molecular Biology 223:1–7Google Scholar
  33. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574Google Scholar
  34. Paciolla C, Tommasi F (2003) The ascorbate system in two bryophytes: Brachythecium velutinum and Marchantia polymorpha. Biol Plant 47(3):387–393CrossRefGoogle Scholar
  35. Pallanca JE, Smirnoff N (1999) Ascorbic acid metabolism in pea seedlings. A comparison of D-glucosone, L-sorbosone, and L-galactono-1,4-lactone as ascorbate precursors. Plant Physiol 120:453–461CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pauling L (1970) Evolution and the need for ascorbic acid. Proc Natl Acad Sci U S A 67(4):1643–1648CrossRefPubMedPubMedCentralGoogle Scholar
  37. Radzio JA, Lorence A, Chevone BI, Nessler CL (2003) L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol 53(6):837–844CrossRefPubMedGoogle Scholar
  38. Saputra HM, Mandia S, Retnoaji B, Wijayanti N (2016) Antioxidant properties of liverwort (Marchantia polymorpha L.) to lead-induced oxidative stress on HEK293 cells. J Biol Sci 16(3):77–85CrossRefGoogle Scholar
  39. Sharma N, Jung CH, Bhalla PL, Singh MB (2014) RNA sequencing analysis of the gametophyte transcriptome from the liverwort, Marchantia polymorpha. PLoS One 9(5):e97497Google Scholar
  40. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508CrossRefPubMedGoogle Scholar
  41. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35(4):291–314CrossRefPubMedGoogle Scholar
  42. Stevens R, Buret M, Duffé P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sun SQ, He M, Cao T, Li JL (2010) Antioxidative responses related to H2O2 depletion in Hypnum plumaeforme under the combined stress induced by Pb and Ni. Environ Monit Assess 163:303–312CrossRefPubMedGoogle Scholar
  44. Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. elife 4:e06369PubMedCentralGoogle Scholar
  45. Yactayo-Chang J. (2011) Stable co-expression of vitamin C enhancing genes for improved production of a recombinant therapeutic protein, hIL-12, in Arabidopsis thaliana. MS Thesis, Arkansas State University, Jonesboro, ARGoogle Scholar
  46. Yactayo-Chang J. (2016) The role of the chloroplastic and endoplasmic reticulum ascorbate subcellular pools in plant physiology. PhD thesis, Arkansas State University, Jonesboro, Arkansas, USAGoogle Scholar
  47. Yactayo-Chang JP, Lorence A. (2016) Method of improving chloroplast function. US Patent pendingGoogle Scholar
  48. Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S, Fujishita M, Bando H, Yodoya K, Hayashi K, Bando T, Hasumi A, Nishio T, Sakata R, Yamamoto M, Yamaki A, Kajikawa M, Yamano T, Nishide T, Choi SH, Shimizu-Ueda Y, Hanajiri T, Sakaida M, Kono K, Takenaka M, Yamaoka S, Kuriyama C, Kohzu Y, Nishida H, Brennicke A, Shin-i T, Kohara Y, Kohchi T, Fukuzawa H, Ohyama K (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci U S A. 104:6472–7Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Jarrod Creameans
    • 1
  • Karina Medina-Jiménez
    • 2
  • Tanya Gómez-Díaz
    • 2
  • Viankail Cedillo-Castelán
    • 3
  • Dulce Flores-Martínez
    • 2
  • Adolfo Aguilar-Cruz
    • 2
  • Omar Altehua-Lopez
    • 2
  • Grecia Lopez-Ramirez
    • 2
  • Ana E. Dorantes-Acosta
    • 2
  • John L. Bowman
    • 4
  • Argelia Lorence
    • 1
    • 5
    Email author
  • Mario A. Arteaga-Vazquez
    • 2
  1. 1.Arkansas Biosciences InstituteArkansas State UniversityJonesboroUSA
  2. 2.Instituto de Biotecnologia y Ecologia Aplicada (INBIOTECA)Universidad VeracruzanaXalapaMexico
  3. 3.Instituto de Biotecnologia (IBT)Universidad Nacional Autonoma de Mexico (UNAM)CuernavacaMexico
  4. 4.School of Biological SciencesMonash UniversityMelbourneAustralia
  5. 5.Department of Chemistry and PhysicsArkansas State UniversityJonesboroUSA

Personalised recommendations