Ascorbic Acid Biofortification in Crops

  • Gavin M. GeorgeEmail author
  • Michael E. Ruckle
  • Melanie R. Abt
  • Simon E. Bull


l-Ascorbic acid (AsA) is an essential nutrient in the human diet. It is required for growth and repair of tissues, and severe deficiency can lead to debilitating diseases such as scurvy. Although relatively cheap to synthetically produce, ascorbate deficiencies are common throughout developed and developing countries. In plants, AsA is a key component of multiple antioxidant systems, which defend plant cells from biotic and abiotic stresses, and is therefore an attractive target for biofortification in crops. AsA metabolism is complex due to the existence of multiple biosynthetic pathways, which can contribute differing amounts of AsA depending on the plant species, organ, tissue type, and stress conditions. In addition, several pathways of oxidation and recycling of AsA exist, which together allow subcellular compartments to tailor AsA accumulation and turnover. Biotechnological approaches in model and crop species have been successful in increasing AsA concentrations, but these gains have not reached the potential some species of plants have to produce AsA and that could benefit industrial and public stakeholders. Given recent improvements in our understanding of AsA biosynthesis as well as the advancement in novel breeding technology, there is renewed potential to overcome limitations in AsA biofortification. Here we attempt to connect the current biological knowledgebase with novel technologies and crop resources to provide a strategy to improve plant-synthesized AsA in the world food system.


l-Ascorbic acid Vitamin C AsA Biotechnological improvement Ascorbate recycling Smirnoff–Wheeler d-Mannose/l-galactose l-Gulose Pectin Genome editingTILLING Transgenic Commercial varieties 



We would like to thank Prof. Samuel C. Zeeman and Prof. Bruno Studer for their continuing support during and beyond the preparation of this chapter. MR would also like to thank the World Food Systems Center for the contribution to funding this authors work.


  1. Aboobucker SI, Suza WP, Lorence A (2017) Characterization of two Arabidopsis L-gulono-1,4-lactone oxidases, AtGulLO3 and AtGulLO5, involved in ascorbate biosynthesis. Reactive Oxygen Species 4(12):1–29Google Scholar
  2. Abrahams Z, Mchiza Z, Steyn NP (2011) Diet and mortality rates in Sub-Saharan Africa: stages in the nutrition transition. BMC Public Health 11:801PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agius F, Gonzalez-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181PubMedCrossRefGoogle Scholar
  4. Amaya I, Osorio S, Martinez-Ferri E, Lima-Silva V, Doblas VG, Fernández-Muñoz R, Fernie AR, Botella MA, Valpuesta V (2015) Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene. Biotechnol J 10:490–500PubMedCrossRefGoogle Scholar
  5. Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9PubMedCrossRefGoogle Scholar
  7. Badejo AA, Wada K, Gao YS, Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2012) Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. J Exp Bot 63:229–239PubMedCrossRefGoogle Scholar
  8. Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M (2009) Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol 50:423–428PubMedCrossRefGoogle Scholar
  9. Badejo AA, Tanaka N, Esaka M (2008) Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol 49:126–132PubMedCrossRefGoogle Scholar
  10. Baig MM, Kelly S, Loewus F (1970) L-Ascorbic acid biosynthesis in higher plants from L-gulono-1,4-lactone and L-galactono-1,4-lactone. Plant Physiol 46:277–280PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baldet P et al (2013) TILLING identification of ascorbate biosynthesis tomato mutants for investigating vitamin C in tomato. Plant Biotechnol 30:309–314CrossRefGoogle Scholar
  12. Bao G, Zhuo C, Qian C, Xiao T, Guo Z, Lu S (2016) Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol J 14:206–214PubMedCrossRefGoogle Scholar
  13. Barata-Soares AD, Gomez MLPA, de Mesquita CH, Lajolo FM (2004) Ascorbic acid biosyn-thesis: a precursor study on plants. Braz J Plant Physiol 16:147–154CrossRefGoogle Scholar
  14. Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bartoli CG, Tambussi EA, Diego F, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122PubMedCrossRefGoogle Scholar
  16. Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631PubMedCrossRefGoogle Scholar
  17. Baltes NJ, Gil-Humanes J, Voytas DF (2017) Genome engineering and agriculture: opportunities and challenges. Prog Mol Biol Transl Sci 149:1–26PubMedCrossRefGoogle Scholar
  18. Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol 216:682–698PubMedCrossRefGoogle Scholar
  19. Bauernfeind JC, Pinkert DM (1970) Food processing with added ascorbic acid. Adv Food Res 18:219–315PubMedCrossRefGoogle Scholar
  20. Bielski BHJ (1982) Chemistry of ascorbic acid radicals. In: Seib PA, Tolbert BM (eds) Ascorbic acid: chemistry, metabolism and uses, Advances in chemistry, vol 200. American Chemical Society, Washington, DC, pp 81–100CrossRefGoogle Scholar
  21. Bottino A, Degl’Innocenti E, Guidi L, Graziani G, Fogliano V (2009) Bioactive compounds during storage of fresh-cut spinach: the role of endogenous ascorbic acid in the improvement of produce quality. J Agric Food Chem 57:2925–2931PubMedCrossRefGoogle Scholar
  22. Brand M (2010) Aronia: native shrubs with untapped potential. Arnoldia 67(3):14–25Google Scholar
  23. Brecht JK, Slatveit ME, Tacoltt ST, Schneider KR, Felkey K, Bartz J (2004) Fresh-cut vegetables and fruits. Hortic Rev 30:185–250Google Scholar
  24. Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA (2012) Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnol J 10:390–397PubMedCrossRefGoogle Scholar
  26. Camarena V, Wang G (2016) The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci 73:1645–1658PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cai X, Zhang C, Shu W, Ye Z, Li H, Zhang Y (2016) The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun 474:736–741PubMedCrossRefGoogle Scholar
  28. Cai X, Zhang C, Ye J, Hu T, Ye Z, Li H, Zhang Y (2015) Ectopic expression of FaGalUR leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Growth Regul 76:187–197CrossRefGoogle Scholar
  29. Chamseddine M, Wided BA, Guy H, Marie-Edith C, Fatma J (2009) Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul 27:89–99CrossRefGoogle Scholar
  30. Chauvin ND, Mulangu F, Porto G (2012) Food production and consumption trends in Sub-Saharan Africa: prospects for the transformation of the Agricultural Sector. United Nations Development Program Report WP 2012-011Google Scholar
  31. Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444PubMedCrossRefGoogle Scholar
  32. Chen Z (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138(3):1673–1689PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chen Z, Qin C, Lin L, Zeng X, Zhao Y, He S, Lu S, Guo Z (2015) Overexpression of yeast arabinono-1,4-lactone oxidase gene (ALO) increases tolerance to oxidative stress and Al toxicity in transgenic tobacco plants. Plant Mol Biol Report 33:806–818CrossRefGoogle Scholar
  35. Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480PubMedPubMedCentralCrossRefGoogle Scholar
  36. Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31:244–257PubMedGoogle Scholar
  37. Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970CrossRefGoogle Scholar
  38. Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856PubMedPubMedCentralGoogle Scholar
  39. Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes L-Galactose-1-P Phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281(23):15662–15670PubMedCrossRefGoogle Scholar
  40. Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G (2013) Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot 64:2793–2804PubMedCrossRefGoogle Scholar
  41. Cronje C, George GM, Fernie AR, Bekker J, Kossmann J, Bauer R (2011) Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Planta 235:553–564PubMedCrossRefGoogle Scholar
  42. Davey MW, Gilot C, Persiau G, Østergaard J, Han Y, Bauw GC, Van Montagu MC (1999) Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol 121:535–543PubMedPubMedCentralCrossRefGoogle Scholar
  43. Degl’Innocenti E, Pardossi A, Tognoni F, Guidi L (2007) Physiological basis of sensitivity to enzymatic browning in ‘lettuce’, ‘escarole’ and ‘rocket salad’ when stored as fresh-cut products. Food Chem 104:209–215CrossRefGoogle Scholar
  44. Di Matteo A, Sacco A, Anacleria M et al (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol 10:163PubMedPubMedCentralCrossRefGoogle Scholar
  45. Diplock AT, Charuleux J-L, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Viña-Ribes J (1998) Functional food science and defence against reactive oxidative species. Br J Nutr 80(S1):S77PubMedCrossRefGoogle Scholar
  46. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689PubMedCrossRefGoogle Scholar
  47. Drouin G, Godin JR, Page B (2011) The genetics of vitamin C loss in vertebrates. Curr Genomics 12:371–378PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dumville JC, Fry SC (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961PubMedCrossRefGoogle Scholar
  49. Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049PubMedPubMedCentralCrossRefGoogle Scholar
  50. Eltayeb AE, Kawano N, Badawi H, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65CrossRefGoogle Scholar
  51. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  52. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedPubMedCentralCrossRefGoogle Scholar
  53. Frei M, Tanaka JP, Chen CP, Wissuwa M (2010) Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. J Exp Bot 61:1405–1417PubMedCrossRefGoogle Scholar
  54. Gao Y, Badejo AA, Shibata H, Sawa Y, Maruta T, Shigeoka S, Oage M, Smirnoff N, Ishikawa T (2011) Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis, in Arabidopsis thaliana. Biosci Biotechnol Biochem 75:1783–1788PubMedCrossRefGoogle Scholar
  55. Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148PubMedCrossRefGoogle Scholar
  56. Garchery C, Gest N, Do PT, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J, Fernie AF, Stevens R (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. Plant Cell Environ 36:159–175PubMedCrossRefGoogle Scholar
  57. Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J 30:541–553PubMedCrossRefGoogle Scholar
  58. Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53PubMedCrossRefGoogle Scholar
  59. Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141:685–701PubMedPubMedCentralCrossRefGoogle Scholar
  60. Goo YM, Chun HJ, Kim TW, Lee CH, Ahn MJ, Bae SC, Cho KJ, Chun JA, Chung CH, Lee SW (2008) Expressional characterization of dehydroascorbate reductase cDNA in transgenic potato plants. J Plant Biol 51:35–41CrossRefGoogle Scholar
  61. Gorney JR, Hess-Pierce B, Cifuentes RA, Kader AA (2002) Quality changes in fresh-cut pear slices as affected by controlled atmospheres and chemical preservatives. Postharvest Biol Technol 24:271–278CrossRefGoogle Scholar
  62. Granlund I, Storm P, Schubert M, García-Cerdán JG, Funk C, Schröder WP (2009) The TL29 protein is lumen located, associated with PSII and not an ascorbate peroxidase. Plant Cell Physiol 50:1898–1910PubMedCrossRefGoogle Scholar
  63. Green MA, Fry SC (2005a) Apoplastic degradation of ascorbate: novel enzymes and metabolites permeating the plant cell wall. Plant Biosyst 139:2–7CrossRefGoogle Scholar
  64. Green MA, Fry SC (2005b) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-Ooxalyl-L-threonate. Nature 433:83–87PubMedCrossRefGoogle Scholar
  65. Grudzinska M, Czerko Z, Zarzynska K, Borowska-Komenda M (2016) Bioactive compounds in potato tubers: effects of farming system, cooking method, and flesh color. PLoS One 11:e0153980PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hallerman E, Grabau E (2016) Crop biotechnology: a pivotal moment for global acceptance. Food Energy Sec 5:3–17CrossRefGoogle Scholar
  67. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  68. Hammer G, Messina C, van Oosterom E (2016) Molecular breeding for complex adaptive traits: how integrating crop ecophysiology and modelling can enhance efficiency. In: Crop systems biology. Springer, ChamGoogle Scholar
  69. Haroldsen VM, Chi-Ham CL, Kulkarni S, Lorence A, Bennett AB (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem 49:1244–1249PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL, Brennan RM, Viola R (2007) L-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway. Funct Plant Biol 34:1080–1091CrossRefGoogle Scholar
  71. Hemavathi U, Upadhyaya CP, Young KE, Akula N, Kim HS, Heung JJ, Oh OM, Aswath CR, Chun SC, Kim DH, Park SW (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667CrossRefGoogle Scholar
  72. Hickey JM, Chiurugwi T, Mackay I, Powell W et al (2017) Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet 49:1297–1303PubMedCrossRefGoogle Scholar
  73. Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267PubMedCrossRefGoogle Scholar
  74. Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Zhang Y, Ye Z (2016) The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Plant J 85:16–29PubMedCrossRefGoogle Scholar
  75. Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T (2009) L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Phys Plant 136:139–149CrossRefGoogle Scholar
  76. Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78CrossRefGoogle Scholar
  77. Jiménez A, Hernández JA, Pastori G, del Río LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the sencescence of pea leaves. Plant Physiol 118:1327–1335PubMedPubMedCentralCrossRefGoogle Scholar
  78. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedCrossRefGoogle Scholar
  79. Johnston EJ, Rylott EL, Beynon E, Lorenz A, Chechik V, Bruce NC (2015) Monodehydroascorbate reductase mediates TNT toxicity in plants. Science 349:1072–1075PubMedCrossRefGoogle Scholar
  80. Kramer M, Sanders R, Bolkan H, Waters C, Sheeny RE, Hiatt WR (1992) Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Postharvest Biol Technol 1(3):241–255CrossRefGoogle Scholar
  81. Kulkarni S (2012) Elevating ascorbate content in tomato and studying the role of jasmonates in modulating ascorbate in Arabidopsis. MS thesis, Arkansas State University, Jonesboro, ARGoogle Scholar
  82. Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353PubMedCrossRefGoogle Scholar
  83. Lane DJ, Richardson DR (2014) The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 75:69–83PubMedCrossRefGoogle Scholar
  84. Lane DJR, Lawen A (2014) A rapid and specific microplate assay for the determination of intra- and extracellular ascorbate in cultured cells. J Vis Exp 86:51322Google Scholar
  85. Laing WA, Martínez-Sánchez M, Wright MA, Bulley SM, Brewster D, Dare AP, Rassam M, Wang D, Storey R, Macknight RC, Hellens RP (2015) An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell 27(3):772–786PubMedPubMedCentralCrossRefGoogle Scholar
  86. Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanylyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104:9534–9539PubMedPubMedCentralCrossRefGoogle Scholar
  87. Landi M, Fambrini M, Basile A, Salvini M, Guidi L, Pugliesi C (2015) Overexpression of L-galactono-1,4-lactone dehydrogenase (L-GalLDH) gene correlates with increased ascorbate concentration and reduced browning in leaves of Lactuca sativa L. after cutting. Plant Cell Tissue Organ Cult 123:109–120CrossRefGoogle Scholar
  88. Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220CrossRefGoogle Scholar
  89. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245PubMedPubMedCentralCrossRefGoogle Scholar
  90. Levine M, Violet PC (2017) Data Triumph at C. Cancer Cell 31:467–469PubMedCrossRefGoogle Scholar
  91. Li S, Wang J, Yu Y, Wang F, Dong J, Huang R (2016) D27E mutation of VTC1 impairs the interaction with CSN5B and enhances ascorbic acid biosynthesis and seedling growth in Arabidopsis. Plant Mol Biol 92(4–5):473–482PubMedCrossRefGoogle Scholar
  92. Li Q, Li C, Yu X (2012) Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen & salt stresses in tomato. Czech J Genet Plant Breed 48:74–86CrossRefGoogle Scholar
  93. Li M, Ma F, Liang D, Li J, Wang Y (2010a) Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS One 5:e14281PubMedPubMedCentralCrossRefGoogle Scholar
  94. Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010b) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139(4):421–434PubMedGoogle Scholar
  95. Li MJ, Ma FW, Zhang M, Pu F (2008) Distribution and metabolism of ascorbic acid in apple fruits (Malus domestica Borkh cv. Gala). Plant Sci 174:606–612CrossRefGoogle Scholar
  96. Lim MY, Jeong BR, Jung M, Harn CH (2016) Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol Rep 10:105–116CrossRefGoogle Scholar
  97. Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant 49(6):643–655PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lisko KA, Aboobucker SI, Torres R, Lorence A (2014) Engineering elevated vitamin C in plants to improve their nutritional content, growth, and tolerance to abiotic stress. In: Jetter R (ed) Phytochemicals—biosynthesis, function and application, vol 44. Springer, pp 109–128Google Scholar
  99. Liu F, Wang L, Gu L, Zhao W, Su H, Cheng X (2015) Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry. Food Chem 188:399–405PubMedCrossRefGoogle Scholar
  100. Liu W, An H-M, Yang M (2013) Overexpression of Rosa roxburghii L-galactono-1,4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol Plant 35:1617–1624CrossRefGoogle Scholar
  101. Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lorence A, Nessler CL (2007) Pathway engineering of the plant vitamin C metabolic network. In: Verpoorte R, Alferman AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, DordrechtGoogle Scholar
  103. Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Virus 7:4254–4281CrossRefGoogle Scholar
  104. Lusk JL, McFadden BR, Rickard BJ (2015) Which biotech foods are most acceptable to the public? Biotechnol J 10:13–16PubMedCrossRefGoogle Scholar
  105. Ma L, Wang Y, Liu W, Liu Z (2014) Overexpression of an alfalfa GDP-mannose 3,5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnol Lett 36(11):2331–2341PubMedCrossRefGoogle Scholar
  106. Macknight RC, Laing WA, Bulley SM, Broad RC, Johnson AA, Hellens RP (2017) Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Curr Opin Biotechnol 44:153–160PubMedCrossRefGoogle Scholar
  107. Mapson LW, Isherwood FA, Chen YT (1954) Biological synthesis of L-ascorbic acid: the conversion of L-galactono-γ-lactone into L-ascorbic acid by plant mitochondria. Biochem J 56:21–28PubMedPubMedCentralCrossRefGoogle Scholar
  108. Markarian SA, Sargsyan HR (2011) Electronic absorption spectra of ascorbic acid in water and water–dialkylsulfoxide mixtures. J Appl Spectrosc 78:6CrossRefGoogle Scholar
  109. Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851PubMedPubMedCentralCrossRefGoogle Scholar
  110. Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T, Shigeoka S (2010) The contribution of Arabidopsis homologs of L-gulono-1,4-lactone oxidase to the biosynthesis of ascorbic acid. Biosci Biotechnol Biochem 74:1494–1497PubMedCrossRefGoogle Scholar
  111. Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW (2012a) Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol 160:1613–1629PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mellidou I, Keulemans J, Kanellis AK, Davey MW (2012b) Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol 12:239PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mellidou I, Kanellis AK (2017) Genetic control of ascorbic acid biosynthesis and recycling in horticultural crops. Front Chem 5:50PubMedPubMedCentralCrossRefGoogle Scholar
  114. Ménard G, Biais B, Prodhomme D, Ballias P, Petit J, Just D, Rothan C, Rolin D, Gibon Y (2013) High throughput biochemical phenotyping for plants. In: Rolin D (ed) Metabolomics coming of age with its technological diversity, Advances in botanical research, vol 67. Academic, San Diego, pp 407–439CrossRefGoogle Scholar
  115. Moeslinger T, Brunner M, Voif I, Spieckermann PG (1995) Spectrophotometric determination of ascorbic acid and dehydroascorbic acid. Clin Chem 41(8):1177–1181PubMedGoogle Scholar
  116. Moller IM (2001) Plant mitochondria and oxidative stress. Electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591PubMedCrossRefGoogle Scholar
  117. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  118. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467PubMedCrossRefGoogle Scholar
  119. Naqvi S, Zhu CF, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767PubMedPubMedCentralCrossRefGoogle Scholar
  120. Niki E (1991) Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr 54:1119–1124CrossRefGoogle Scholar
  121. Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S (2016) Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 80(5):870–877PubMedCrossRefGoogle Scholar
  122. Nunes-Nesi A, Carrari F, Lytovchenko A, Smith AM, Loureiro ME, Ratcliffe AG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ostergaard J, Persiau G, Davey MW, Bauw G, Van Montagu M (1997) Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272:30009–30016PubMedCrossRefGoogle Scholar
  124. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee J, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35PubMedCrossRefGoogle Scholar
  125. Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581PubMedPubMedCentralCrossRefGoogle Scholar
  126. Pallanca JE, Smirnoff N (1999) Ascorbic acid metabolism in pea seedlings. A comparison of D-glucosone, L-sorbosone, and L-galactono-1,4-lactone as ascorbate precursors. Plant Physiol 120:453–461PubMedPubMedCentralCrossRefGoogle Scholar
  127. Pappenberger G, Hohmann HP (2014) Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid. Adv Biochem Eng Biotechnol 143:143–188PubMedGoogle Scholar
  128. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signalling. Plant Cell 15:939–951PubMedPubMedCentralCrossRefGoogle Scholar
  129. Passeri V, Koes R, Quattrocchio FM (2016) New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles. Front Plant Sci 7:153PubMedPubMedCentralCrossRefGoogle Scholar
  130. Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, Wang D (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413PubMedCrossRefGoogle Scholar
  131. Qin A, Huang X, Zhang H, Wu J, Yang J, Zhang S (2015) Overexpression of PbDHAR2 from Pyrus sinkiangensis in transgenic tomato confers enhanced tolerance to salt and chilling stresses. Hortscience 50:789–796Google Scholar
  132. Qin A, Shi Q, Yu X (2011) Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38(3):1557–1566PubMedCrossRefGoogle Scholar
  133. Radzio JA, Lorence A, Chevone BI, Nessler CL (2003) L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol 53:837–844PubMedCrossRefGoogle Scholar
  134. Rahantaniaina MS, Li S, Chatel-Innocenti G, Tuzet A, Issakidis-Bourguet E, Mhamdi A, Noctor G (2017) Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway. Plant Physiol 174:956–971PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ratkevicius N, Correa JA, Moenne A (2003) Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant Cell Environ 26:1599–1608CrossRefGoogle Scholar
  136. Raymond J, Segre D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–1767PubMedCrossRefGoogle Scholar
  137. Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rupasinghe HPV, Murr DP, DeEll JR, Odumeru J (2005) Influence of 1-methylcyclopropene and Natureseal on the quality of fresh-cut “Empire” and “Crispin” apples. J Food Qual 28:289–307CrossRefGoogle Scholar
  139. Sawake S, Tajima N, Mortimer JC, Lao J, Ishikawa T, Yu X, Yamanashi Y, Yoshimi Y, Kawai-Yamada M, Dupree P, Tsumuraya Y, Kotake T (2015) KONJAC1 and 2 are key factors for GDP-Mannose generation and affect L-Ascorbic acid and glucomannan Biosynthesis in Arabidopsis. Plant Cell 27:3397–3409PubMedPubMedCentralCrossRefGoogle Scholar
  140. Schleicher RL, Carroll MD, Ford ES, Lacher DA (2009) Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). Am J Clin Nutr 90:1252–1263PubMedCrossRefGoogle Scholar
  141. Schertl P, Sunderhaus S, Klodmann J, Grozeff GE, Bartoli CG, Braun HP (2012) L-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. J Biol Chem 287:14412–14419PubMedPubMedCentralCrossRefGoogle Scholar
  142. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319PubMedCrossRefGoogle Scholar
  143. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314PubMedCrossRefGoogle Scholar
  144. Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467PubMedCrossRefGoogle Scholar
  145. Stevens R, Buret M, Duffé P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953PubMedPubMedCentralCrossRefGoogle Scholar
  146. Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096PubMedCrossRefGoogle Scholar
  147. Streb P, Aubert S, Gout E, Bligny R (2003) Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis. J Exp Bot 54(381):405–418PubMedCrossRefGoogle Scholar
  148. Subrahmanian N, Remacle C, Hamel PP (2016) Plant mitochondrial Complex I composition and assembly: a review. Biochim Biophys Acta Bioenerg 1857:1001–1014CrossRefGoogle Scholar
  149. Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC, Von Korff M, Steinhauser MC, Keurentjes JJB, Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA 106:10348–10353PubMedPubMedCentralCrossRefGoogle Scholar
  150. Sun SQ, He M, Cao T, Yusuyin Y, Han W, Li JL (2010) Antioxidative responses related to H2O2 depletion in Hypnum plumaeforme under the combined stress induced by Pb and Ni. Environ Monit Assess 163:303–312PubMedCrossRefGoogle Scholar
  151. Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641PubMedPubMedCentralCrossRefGoogle Scholar
  152. Tóth SZ, Nagy V, Puthur JT, Kovacs L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392PubMedPubMedCentralCrossRefGoogle Scholar
  153. Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P (2012) Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br J Nutr 108(4):692–698PubMedCrossRefGoogle Scholar
  154. Ueda Y, Wu L, Frei M (2013) A critical comparison of two high-throughput ascorbate analyses methods for plant samples. Plant Physiol Biochem 70:418–423PubMedCrossRefGoogle Scholar
  155. Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184PubMedCrossRefGoogle Scholar
  156. Vanacker H, Carver TLW, Foyer CH (1998a) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117(3):1103–1114PubMedPubMedCentralCrossRefGoogle Scholar
  157. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390PubMedPubMedCentralCrossRefGoogle Scholar
  158. Vanacker H, Foyer CH, Carver TLW (1998b) Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta 208:444–452CrossRefGoogle Scholar
  159. Varvara M, Bozzo G, Celano G, Disanto C, Pagliarone CN, Celano GV (2016) The use of ascorbic acid as a food additive: technical-legal issues. Ital J Food Saf 5:4313PubMedPubMedCentralGoogle Scholar
  160. Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435PubMedPubMedCentralCrossRefGoogle Scholar
  161. Vislisel JM, Schafer FQ, Buettner GR (2007) A simple and sensitive assay for ascorbate using a plate reader. Anal Biochem 365:31–39PubMedPubMedCentralCrossRefGoogle Scholar
  162. Waltz E (2015a) USDA approves next-generation GM potato. Nat Biotechnol 33:12–13PubMedCrossRefGoogle Scholar
  163. Waltz E (2015b) Nonbrowning GM apple cleared for market. BIOENTREPRENEUR.
  164. Wang TL, Uauy C, Robson F, Till B (2012) TILLING in extremis. Plant Biotechnol J 10:761–772PubMedCrossRefGoogle Scholar
  165. Wang Z, Xiao Y, Chen W, Tank K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409PubMedCrossRefGoogle Scholar
  166. Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma L, Deng XW, Huang R (2013) Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell 25(2):625–636PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wevar-Oller AL, Agostini E, Milrad SR, Medina MI (2009) In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots: a precursor feeding study. Plant Sci 177:28–34CrossRefGoogle Scholar
  168. Weil CF (2009) TILLING in grass species. Plant Physiol 149:158–164PubMedPubMedCentralCrossRefGoogle Scholar
  169. Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 3:e162PubMedCentralCrossRefGoogle Scholar
  170. Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. elife.
  171. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369PubMedCrossRefGoogle Scholar
  172. Wolucka BA, Van Montagu M (2003) GDP-mannose 3′, 5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490PubMedCrossRefGoogle Scholar
  173. Yabuta Y, Mieda T, Rapolu NA, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671PubMedCrossRefGoogle Scholar
  174. Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796PubMedCrossRefGoogle Scholar
  175. Yew WS, Gerlt JA (2002) Utilization of L-Ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J Bacteriol 184(1):302–306PubMedPubMedCentralCrossRefGoogle Scholar
  176. Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621PubMedCrossRefGoogle Scholar
  177. Zaraska M (2017) Tomorrow’s menu. New Sci 233:32–35CrossRefGoogle Scholar
  178. Zechmann B (2011) Subcellular distribution of ascorbate in plants. Plant Signal Behav 6:360–363PubMedPubMedCentralCrossRefGoogle Scholar
  179. Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12PubMedCrossRefGoogle Scholar
  180. Zhang C, Ouyang B, Yang C, Zhang X, Liu H, Zhang Y, Zhang J, Li H, Ye Z (2013) Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant. PLoS One 8:e61987PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287PubMedCrossRefGoogle Scholar
  182. Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398PubMedCrossRefGoogle Scholar
  183. Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL (2009) AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942–950PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zhang G, Liu R, Zhang CQ, Tang KX, Sun MF, Yan GH, Liu QQ (2015) Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS One 10:e0125870PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zhou Y, Tao QC, Wang ZN, Fan R, Li Y, Sun XF, Tang KX (2012) Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biol Plant 56:451–457CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Gavin M. George
    • 1
    Email author
  • Michael E. Ruckle
    • 2
  • Melanie R. Abt
    • 1
  • Simon E. Bull
    • 1
  1. 1.Department of BiologyETH ZurichZurichSwitzerland
  2. 2.Molecular Plant BreedingInstitute of Agricultural SciencesZurichSwitzerland

Personalised recommendations