The Role of Plant High-Throughput Phenotyping in the Characterization of the Response of High Ascorbate Plants to Abiotic Stresses

  • Jessica P. Yactayo-Chang
  • Lucia M. Acosta-Gamboa
  • Nirman Nepal
  • Argelia LorenceEmail author


l-Ascorbic acid (AsA, ascorbate or vitamin C) is the most abundant water-soluble antioxidant found in plants. Ascorbate is synthesized via four pathways involving d-mannose/l-galactose, d-galacturonate, l-gulose, and myo-inositol as main precursors. In addition to protecting plant tissues from damage caused by reactive oxygen species produced through normal oxygenic metabolism or those generated from biotic and abiotic stresses, ascorbate is also an enzyme cofactor and a modulator of cell division, cell expansion, flowering time, and gene regulation. Plants that are deficient in ascorbate are affected in multiple ways including alterations in cell division, cell expansion, seed germination, growth, floral induction, and photosynthesis. Additionally, elevated ascorbate content in plants leads to an increase in their nutritive value, lengthening of their shelf life, enhancement on their growth rate and biomass accumulation, and to an increased tolerance to multiple abiotic stresses including salt, cold, heat, and water deficit. Increasing the productivity of crops is imperative to satisfy the growing demand for food, feed, and fuels in the world, and biotechnology can lead to the development of plants with higher yields capable of thriving under adverse conditions. To this end, phenotype screening and characterization of a large number of plants experimentally obtained is time consuming and requires a significant amount of resources, skills, and expertise. In this chapter, we will present an overview of how the use of high-throughput phenotyping or phenomics is revolutionizing the way plant phenotypes are characterized and will illustrate the power of digital phenotyping in the characterization of plants overexpressing enzymes in the inositol pathway to ascorbate.


Ascorbate Vitamin C Abiotic stress tolerance High-throughput plant phenotyping Phenomics 


  1. Aboobucker SI (2014) Identification and characterization of a functional L-gulono-1,4-lactone oxidase in Arabidopsis thaliana. PhD dissertation, Arkansas State University, Jonesboro, ARGoogle Scholar
  2. Aboobucker SI, Suza WP, Lorence A (2017) Characterization of two Arabidopsis L-gulono-1,4-lactone oxidases, AtGulLO3 and AtGulLO5, involved in ascorbate biosynthesis. React Oxyg Spec 4(12):1–29Google Scholar
  3. Agius F, Gonzáles-Lamothe R, Caballero JL, Muňoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by over-expression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181CrossRefPubMedGoogle Scholar
  4. Amaya I, Osorio S, Martinez-Ferri E, Lima-Silva V, Doblas VG, Fernández-Muňoz R, Fernie AR, Botella MA, Valpuesta V (2014) Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene. Biotechnol J 10(3):490–500CrossRefPubMedGoogle Scholar
  5. Badejo A, Tanaka N, Esaka M (2008) Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol 49(1):126–132CrossRefPubMedGoogle Scholar
  6. Badejo A, Eltelib H, Fukunaga K, Fujikawa Y, Esaka M (2009) Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol 50(2):423–428CrossRefPubMedGoogle Scholar
  7. Bao G, Zhuo C, Qian C, Xiao T, Guo Z, Lu S (2016) Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol J 14:206–214CrossRefPubMedGoogle Scholar
  8. Barrangou R, Doudna J (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941CrossRefPubMedGoogle Scholar
  9. Beal T, Massiot E, Arsenault JE, Smith MR, Hijmans RJ (2017) Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS One 12(4):e0175554CrossRefPubMedPubMedCentralGoogle Scholar
  10. Belmonte M, Stasolla C (2009) Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiol Biochem 47:904–911CrossRefPubMedGoogle Scholar
  11. Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA (2012) Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnol J 10:390–397CrossRefPubMedGoogle Scholar
  12. Cai X, Zhang C, Ye J, Hu T, Ye Z, Li H, Zhang Y (2014) Ectopic expression of FaGalUR leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Growth Regul 76(2):187–197CrossRefGoogle Scholar
  13. Cai X, Zhang C, Shu W, Ye Z, Li H, Zhang Y (2016) The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun 474:736–741CrossRefPubMedGoogle Scholar
  14. Chambial S, Dwivedi S, Kant Shukla K, John P, Sharma P (2013) Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 4:314–328CrossRefGoogle Scholar
  15. Chen Z, Gallie D (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen Z, Young T, Ling J, Chang S, Gallie D (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci U S A 100(6):3525–3530CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chitwood D, Ranjan A, Martinez C, Headland L, Thiem T, Kumar R, Covington M, Hatcher T, Naylor D, Zimmerman S, Downs N, Raymundo N, Buckler E, Maloof J, Aradhya M, Prins B, Li L, Myles S, Sinha N (2014) A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiol 164:259–272CrossRefPubMedGoogle Scholar
  18. Cho K, Nguyen H, Kim S, Shin J, Cho D, Hong S, Shin J, Ok S (2016) CML10, a variant of calmodulin, modulates ascorbic acid synthesis. New Phytol 209:664–678CrossRefPubMedGoogle Scholar
  19. Conklin P, De Paolo D, Wintle B, Schatz C, Buckenmeyre G (2013) Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase: protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot 64:2793–2804CrossRefPubMedGoogle Scholar
  20. Cronje C, George GM, Fernie AR, Bekker J, Kossmann J, Bauer R (2012) Manipulation of L-ascorbic acid biosynthesis pathway in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhanced L-ascorbate levels in red fruit. Planta 235:553–564CrossRefPubMedGoogle Scholar
  21. Eltayeb A, Kawano N, Badawi G, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65CrossRefGoogle Scholar
  22. Eltayeb A, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264CrossRefPubMedGoogle Scholar
  23. Eltayeb A, Yamamoto S, Eltayeb Habora M, Yin L, Tsujimoto H, Tanaka K (2011) Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed Sci 61:3–10CrossRefGoogle Scholar
  24. Eltelib H, Fujikawa Y, Esaka M (2012) Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 78:295–301CrossRefGoogle Scholar
  25. Fahlgren N, Gehan M, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99CrossRefPubMedGoogle Scholar
  26. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18CrossRefPubMedPubMedCentralGoogle Scholar
  27. Foyer C, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studies in transgenic plants. Plant Cell Environ 17:507–523CrossRefGoogle Scholar
  28. Furbank R, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644CrossRefPubMedGoogle Scholar
  29. Gest N, Garchery C, Gautier H, Jiménez A, Stevens R (2013) Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol. Plant Biotechnol J 11:344–354CrossRefPubMedGoogle Scholar
  30. Goo Y, Chun H, Kim T, Lee C, Ahn M, Bae S, Cho K, Chun J, Chung C, Lee S (2008) Expressional characterization of dehydroascorbate reductase cDNA in transgenic potato plants. J Plant Biol 51:35–41CrossRefGoogle Scholar
  31. Haroldsen V, Chi-Ham C, Kulkarni S, Lorence A, Bennett A (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem 49(10):1244–1249CrossRefPubMedPubMedCentralGoogle Scholar
  32. Heick H, Graff G, Humpers J (1972) The occurrence of ascorbic acid among the yeast. Can J Microbiol 18(5):597–600CrossRefPubMedGoogle Scholar
  33. Hemavathi, Upadhyaya C, Young K, Akula N, Kim H, Heung J, Oh O, Aswath C, Chun S, Kim D, Park S (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667CrossRefGoogle Scholar
  34. Hemavathi, Upadhyava C, Akula N, Young K, Chun S, Kim D, Park S (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330CrossRefPubMedGoogle Scholar
  35. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866CrossRefPubMedGoogle Scholar
  36. Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z (2016) The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Plant J 85:16–29CrossRefPubMedGoogle Scholar
  37. Huang M, Xu Q, Deng X (2014) L-ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). J Plant Physiol 171(14):1205–1216CrossRefPubMedGoogle Scholar
  38. Imai T, Ban Y, Yamamoto T, Moriguchi T (2012) Ectopic overexpression of peach GDP-D-mannose pyrophosphorylase and GDP-D-mannose-3’5’-epimerase in transgenic tobacco. Plant Cell Tissue Organ Cult 111:1–13CrossRefGoogle Scholar
  39. Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355CrossRefGoogle Scholar
  40. Jain A, Nessler C (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78CrossRefGoogle Scholar
  41. Jansen M, Gilmer F, Biskup B, Nagel K, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, De Jaeger I, Metzlaff M, Schurr U, Scharr H, Achim W (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36:902–914CrossRefGoogle Scholar
  42. Junker A, Muraya M, Weigelt-Fischer K, Arana-Ceballos F, Klukas C, Melchinger A, Meyer R, Riewe D, Altmann T (2014) Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front Plant Sci 5:770PubMedGoogle Scholar
  43. Klukas C, Chen D, Pape J (2014) Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant Physiol 165:506–518CrossRefPubMedPubMedCentralGoogle Scholar
  44. Krajewski P, Chen D, Ćwiek H, Dijk A, Fiorani F, Kersey P, Klukas C, Lange M, Markiewicz A, Nap J, Oeveren J, Pommier C, Scholz U, Schriek M, Usadel B, Weise S (2015) Towards recommendations for metadata and data handling in plant phenotyping. J Exp Bot 66:5417–5427CrossRefPubMedGoogle Scholar
  45. Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers M, Roth M, Bi K, TerAvest D, Weebadde P, Kramer D (2016) MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. R Soc Open Sci 3:160592CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kulkarni S (2012) Elevating ascorbate content in tomato and studying the role of jasmonates in modulating ascorbate in Arabidopsis. MS Thesis, Arkansas State University, Jonesboro, ARGoogle Scholar
  47. Kwon S, Choi S, Ahn Y, Lee H, Lee H, Park Y, Kwak S (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353CrossRefPubMedGoogle Scholar
  48. Laing W, Wright M, Cooney J, Bulley S (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, and L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci U S A 104(22):9534–9539CrossRefPubMedPubMedCentralGoogle Scholar
  49. Landi M, Fambrini M, Basile A, Salvini M, Guidi L, Pugliesi C (2015) Overexpression of L-galactono-1,4-lactone dehydrogenase (L-GalLDH) gene correlates with increased ascorbate concentration and reduced browning in leaves of Lactuca sativa L. after cutting. Plant Cell Tissue Organ Cult 123:109–120CrossRefGoogle Scholar
  50. Leister D, Varotto C, Pesaresi P, Niwergall A, Salamini F (1999) Large-scale evaluation of plant growth in Arabidopsis thaliana by non-invasive image analysis. Plant Physiol Biochem 37:671–678CrossRefGoogle Scholar
  51. Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434PubMedGoogle Scholar
  52. Li Q, Li Y, Li C, Yu X (2012) Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato. Czech J Genet Plant Breed 48(2):74–86CrossRefGoogle Scholar
  53. Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14:20078–20111CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lim M, Jeong B, Jung M, Harn C (2016) Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol Rep 10:105–116CrossRefGoogle Scholar
  55. Linster CL, Van Schaftingen E (2007) Vitamin C: biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22CrossRefPubMedGoogle Scholar
  56. Lisko K, Torres R, Harris R, Belisle M, Vaughan M, Julian B, Chevone B, Mendes P, Nessler C, Lorence A (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant 49(6):643–655CrossRefPubMedPubMedCentralGoogle Scholar
  57. Liu Y, Yu L, Wang R (2011) Level of ascorbic acid in transgenic rice for L-galactono-1,4-lactone dehydrogenase overexpressing or suppressed is associated with plant growth and seed set. Acta Physiol Plant 33:1353–1363CrossRefGoogle Scholar
  58. Liu W, An H, Yang M (2013) Overexpression of Rosa roxburghii L-galactono1,4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol Plant 35:1617–1624CrossRefGoogle Scholar
  59. Liu F, Guo X, Yao Y, Tang W, Zhang W, Cao S, Han Y, Liu Y (2015) Cloning and function characterization of two dehydroascorbate reductases from kiwifruit (Actinidia chinensis L). Plant Mol Biol Rep 34(4):815–826CrossRefGoogle Scholar
  60. Lobet G, Draye X, Périlleux C (2013) An online database for plant image analysis software tools. Plant Methods 9(38):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  61. Loewus F, Kelly S (1961) The metabolism of D-galacturonic acid and its methyl ester in the detached ripening strawberry. Arch Biochem Biophys 95:483–493CrossRefPubMedGoogle Scholar
  62. Lorence A, Nessler C (2007) Pathway engineering of the plant vitamin C metabolic network. In: Verpoorte R, Alfermann AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, Dordrecht, pp 197–217CrossRefGoogle Scholar
  63. Lorence A, Chevone B, Mendes P, Nessler C (2004) myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ma L, Wang Y, Liu W, Liu Z (2014) Overexpression of an alfalfa GDP-mannose 3,5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnol Lett 36(11):2331–2341CrossRefPubMedGoogle Scholar
  65. Mapson L, Isherwood F (1956) Biological synthesis of ascorbic acid: the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extract. Biochem J 64:13–22CrossRefPubMedPubMedCentralGoogle Scholar
  66. Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106(19):7762–7767CrossRefPubMedPubMedCentralGoogle Scholar
  67. Noctor G, Foyer H (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefPubMedGoogle Scholar
  68. Nunes-Nesi A, Carrari F, Lytovchenko A, Smith A, Loureiro M, Ratcliffe R, Sweeetlove L, Fernie A (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nunes-Nesi A, Nascimento Vde L, de Oliveira Silva FM, Zsogon A, Araujo W, Sulpice R (2016) Natural genetic variation for morphological and molecular determinants of plant growth and yield. J Exp Bot 67:2989–3001CrossRefPubMedGoogle Scholar
  70. Pandey P, Ge Y, Stoerger V, Schnable J (2017) High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front Plant Sci 8:1–12PubMedPubMedCentralGoogle Scholar
  71. Paulus S, Dupuis J, Mahlein A, Kuhlmann H (2013) Surface feature based classification of plant organs from 3D laser scanned point clouds for plant phenotyping. BMC Bioinformatics 14:1–12CrossRefGoogle Scholar
  72. Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez M, Foyer C (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303CrossRefPubMedPubMedCentralGoogle Scholar
  73. Qin A, Huang X, Zhang H, Wu J, Yang J, Zhang S (2015) Overexpression of PbDHAR2 from Pyrus sinkiangensis in transgenic tomato confers enhanced tolerance to salt and chilling stress. Hortscience 50:789–796Google Scholar
  74. Radzio J, Lorence A, Chevone B, Nessler C (2003) L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol 53:837–844CrossRefPubMedGoogle Scholar
  75. Rahaman M, Chen D, Gillani Z, Klukas C, Chen M (2015) Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci 6:619CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sawake S, Tajima N, Mortimer JC, Lao J, Ishikawa T, Yu X, Yamanashi Y, Yoshimi Y, Kawai-Yamada M, Dupree P, Tsumuraya Y, Kotake T (2015) KONJAC1 and 2 are key factors for GDP-mannose generation and affect L-ascorbic acid and glucomannan biosynthesis in Arabidopsis. Plant Cell 27:3397–3409CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Muller C, Pugh T, Rolinski S, Schaphoff S, Schmid E, Wang X, Schlenker W, Frieler K (2017) Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun 8:1–9CrossRefGoogle Scholar
  78. Suza W, Avila C, Carruthers K, Kulkarni S, Gogging F, Lorence A (2010) Exploring the impact of wounding and jasmonates on ascorbate metabolism. Plant Physiol Biochem 48:337–350CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783CrossRefPubMedGoogle Scholar
  80. Tóth S, Nagy V, Puthur J, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photo-inactivation in heat-stressed leaves. Plant Physiol 156:382–392CrossRefPubMedPubMedCentralGoogle Scholar
  81. Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Muratad N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184CrossRefPubMedGoogle Scholar
  82. Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52(4):400–409CrossRefPubMedGoogle Scholar
  83. Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma L, Deng XW, Huang R (2013) Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell 25:625–636CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wevar Oller A, Agostini E, Milrad S, Medina M (2009) In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots: a precursor feeding study. Plant Sci 177:28–34CrossRefGoogle Scholar
  85. Wheeler G, Jones M, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369CrossRefPubMedGoogle Scholar
  86. Wolucka B, Van Montagu M (2003) GDP-mannose3′5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278(48):47483–47490CrossRefPubMedGoogle Scholar
  87. Yactayo-Chang J (2011) Stable co-expression of vitamin C enhancing genes for improved production of a recombinant therapeutic protein, hIL-12, in Arabidopsis thaliana. MS thesis, Arkansas State University, Jonesboro, ARGoogle Scholar
  88. Yactayo-Chang J (2016) The role of the chloroplastic and endoplasmic reticulum ascorbate subcellular pools in plant physiology. PhD thesis, Arkansas State University, Jonesboro, ARGoogle Scholar
  89. Yactayo-Chang J, Lorence A (2016) Method of improving chloroplast function. US Patent pendingGoogle Scholar
  90. Yin L, Wang S, Eltayeb A, Uddin I, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621CrossRefPubMedGoogle Scholar
  91. Zhang W, Gruszewski H, Chevone B, Nessler C (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhang W, Lorence A, Gruszewski H, Chevone B, Nessler C (2009) AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942–950CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398CrossRefPubMedGoogle Scholar
  94. Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287CrossRefPubMedGoogle Scholar
  95. Zhang G, Liu R, Zhang C, Tang K, Sun M, Yan G, Liu Q (2015) Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS One 10(5):1–14Google Scholar
  96. Zhou Y, Tao QC, Wang ZN, Fan R, Li Y, Sun XF, Tang KX (2012) Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biol Plant 56(3):451–457CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Jessica P. Yactayo-Chang
    • 1
  • Lucia M. Acosta-Gamboa
    • 1
  • Nirman Nepal
    • 1
  • Argelia Lorence
    • 1
    • 2
    Email author
  1. 1.Arkansas Biosciences Institute, Arkansas State UniversityJonesboroUSA
  2. 2.Department of Chemistry and PhysicsArkansas State UniversityJonesboroUSA

Personalised recommendations