Towards a Taxonomy of Human Resource Allocation Criteria

  • Michael AriasEmail author
  • Jorge Munoz-Gama
  • Marcos Sepúlveda
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 308)


Allocating the most appropriate resource to execute the activities of a business process is a key aspect within the organizational perspective. An optimal selection of the resources that are in charge of executing the activities may contribute to improve the efficiency and the performance of the business processes. Despite the existence of resource metamodels that seek to provide a better representation of resources, a detailed classification of the allocation criteria that have been used to evaluate resources is missing. In this paper, we provide an initial proposal for a resource allocation criteria taxonomy. This taxonomy is based on an extensive literature review that yielded 2,370 articles regarding the existing resource allocation approaches within the business process management discipline, from which 95 articles were considered for the analysis. The proposed taxonomy points out the most frequently used criteria for assessing the resources from January 2005 to July 2016.


Human resource allocation Resource management Allocation criteria Business processes management 



This project was partially funded by the Ph.D. Scholarship Program of CONICYT Chile (Doctorado Nacional/2014-63140181) and by Universidad de Costa Rica.


  1. 1.
    van der Aalst, W.M.P.: Process-aware information systems: lessons to be learned from process mining. ToPNoC 2, 1–26 (2009)Google Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidelberg (2016). CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Kumar, A., Verbeek, H.M.W.E.: Organizational modeling in UML and XML in the context of workflow systems. In: Proceedings of the 2003 ACM Symposium on Applied Computing (SAC), Melbourne, FL, USA, 9–12 March 2003, pp. 603–608 (2003)Google Scholar
  4. 4.
    Arias, M., Munoz-Gama, J., Sepúlveda, M.: Introducing a taxonomy of human resource allocation criteria. Technical report, Pontificia Universidad Católica, Santiago, Chile, June 2017.
  5. 5.
    Arias, M., Rojas, E., Lee, J., Munoz-Gama, J., Sepúlveda, M.: ResRec: a multi-criteria tool for resource recommendation. In: BPM Demos 2016, pp. 17–22 (2016)Google Scholar
  6. 6.
    Cabanillas, C.: Enhancing the management of resource-aware business processes. AI Commun. 29(1), 237–238 (2016)CrossRefGoogle Scholar
  7. 7.
    Cabanillas, C.: Process-and resource-aware information systems. In: EDOC 2016, Vienna, Austria, 5–9 September 2016, pp. 1–10 (2016)Google Scholar
  8. 8.
    Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: RAL: a high-level user-oriented resource assignment language for business processes. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 50–61. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  9. 9.
    Cabanillas, C., Resinas, M., del-Río-Ortega, A., Cortés, A.R.: Specification and automated design-time analysis of the business process human resource perspective. Inf. Syst. 52, 55–82 (2015)CrossRefGoogle Scholar
  10. 10.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  11. 11.
    Havur, G., Cabanillas, C., Mendling, J., Polleres, A.: Resource allocation with dependencies in business process management systems. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 3–19. Springer, Cham (2016). CrossRefGoogle Scholar
  12. 12.
    Kim, A., Obregon, J., Jung, J.-Y.: Constructing decision trees from process logs for performer recommendation. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 224–236. Springer, Cham (2014). CrossRefGoogle Scholar
  13. 13.
    Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele Univ. 33(2004), 1–26 (2004)Google Scholar
  14. 14.
    Koschmider, A., Yingbo, L., Schuster, T.: Role assignment in business process models. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 37–49. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  15. 15.
    zur Muehlen, M.: Organizational management in workflow applications - issues and perspectives. Inf. Technol. Manag. 5(3–4), 271–291 (2004)CrossRefGoogle Scholar
  16. 16.
    Oberweis, A.: A meta-model based approach to the description of resources and skills. In: Sustainable IT Collaboration Around the Globe, AMCIS 2010, Lima, Peru, 12–15 August 2010, p. 383 (2010)Google Scholar
  17. 17.
    Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: identification, representation and tool support. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  18. 18.
    Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A framework for efficiently mining the organisational perspective of business processes. DSS 89, 87–97 (2016)Google Scholar
  19. 19.
    Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: A BPMN 2.0 extension to define the resource perspective of business process models. In: XIV CIbSE, pp. 25–38 (2011)Google Scholar
  20. 20.
    Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Defining the resource perspective in the development of processes-aware information systems. Inf. Softw. Technol. 59, 86–108 (2015)CrossRefGoogle Scholar
  21. 21.
    Yaghoubi, M., Zahedi, M.: Resource allocation using task similarity distance in business process management systems. In: ICSPIS 2016, IEEE . pp. 1–5 (2016)Google Scholar
  22. 22.
    Zhao, W., Yang, L., Liu, H., Wu, R.: The optimization of resource allocation based on process mining. In: Huang, D.-S., Han, K. (eds.) ICIC 2015. LNCS (LNAI), vol. 9227, pp. 341–353. Springer, Cham (2015). CrossRefGoogle Scholar
  23. 23.
    Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Wen, Z., Li, T. (eds.) Foundations of Intelligent Systems. AISC, vol. 277, pp. 701–708. Springer, Heidelberg (2014). Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Computer Science Department, School of EngineeringPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations