Addressing the Transition from School to University

Evolution of a Seminar Emphasizing Historical Sources and Student Reflections
  • Ingo Witzke
  • Kathleen M. Clark
  • Horst Struve
  • Gero Stoffels
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

Beginning in 2015 we designed and taught an intensive seminar, which addressed the transition from school to university by making students aware of concept changes in the history of geometry. This paper focuses on the design of a pilot study and its development into a semester-long seminar. We use the case of one participant, Inga, to highlight the data and results emerging from the pilot seminar. Inga’s case indicated that the seminar raised explicit awareness of the transition from school to university mathematics and was worth expanding into a semester-long seminar. Additionally, students’ experiences in this seminar can also support their transition back to school from university as teachers, paving the way for teacher students to overcome Klein’s well-known double discontinuity.

Keywords

Transition from school to university Beliefs History of geometry Case study 

References

  1. Abd-El-Khalick, F., & Lederman, N. G. (2001). The influence of history of science courses on students’ views of nature of science. Journal of Research in Science Teaching, 37, 1057–1095.CrossRefGoogle Scholar
  2. Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science: The structuralist program. Dordrecht: Springer.CrossRefGoogle Scholar
  3. Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und lehrens. In H. Bauersfeld (Ed.), Lernen und Lehren von Mathematik (Vol. 2, pp. 1–57, Analysen zum Unterrichtshandeln). Köln: Aulis-Verlag Deubner.Google Scholar
  4. Burscheid, H. J., & Struve, H. (2001). Die Differentialrechnung nach Leibniz—Eine Rekonstruktion. Studia Leibnitiana, XXXIII(2), 163–193.Google Scholar
  5. Davis, P. J., Hersh, R., & Marchisotto, E. A. (2012). The mathematical experience (Study edn.). Boston: Birkhäuser.Google Scholar
  6. Freudenthal, H. (1961). Die Grundlagen der Geometrie um die Wende des 19. Jahrhunderts. Mathematisch-Physikalische Semesterberichte, 7, 2–25.Google Scholar
  7. Gallin, P., & Ruf, U. (1991). Sprache und Mathematik in der Schule: Auf eigenen Wegen zur Fachkompetenz (2., unveränd. Aufl.). Zürich: Verl. Lehrerinnen und Lehrer Schweiz.Google Scholar
  8. Gueudet, G., Bosch, M., DiSessa, A. A., Kwon, O. N., & Verschaffel, L. (2016). Transitions in mathematics education (1st ed., ICME-13 Topical surveys). Switzerland: Springer Open.CrossRefGoogle Scholar
  9. Girnat, B. (2011). Ontological beliefs and their impact on teaching elementary geometry. PNA, 5(2), 37–48.Google Scholar
  10. Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematikdidaktik, 19(1), 3–45.CrossRefGoogle Scholar
  11. Gruenwald, N., Kossow, A., Sauerbier, G., & Klymchuk, S. (2004). Der Übergang von der Schul-zur Hochschulmathematik. Global Journal of Engineering Education, 8, 283–294.Google Scholar
  12. Heath, T. L., & Heiberg, J. L. (1926). The thirteen books of Euclid’s Elements (2nd edn.). Cambridge: Cambridge University Press/New York: Dover.Google Scholar
  13. Hempel, C. G. (1945). Geometry and empirical science. American Mathematical Monthly, 52(1), 7–17.CrossRefGoogle Scholar
  14. Hilbert, D. (1899/1902). The foundations of geometry (E. J. Townsend, Trans.). Chicago: The Open Court.Google Scholar
  15. Hoyles, C., Newman, K., & Noss, R. (2001). Changing patterns of transition from school to university mathematics. International Journal of Mathematical Education in Science and Technology, 32(6), 829–845.CrossRefGoogle Scholar
  16. Klein, F. (2004). Elementary mathematics from an advanced standpoint: Arithmetic, algebra, analysis (E. R. Hedrick & C. A. Noble, Trans.). Mineola, NY: Dover.Google Scholar
  17. Kultusministerkonferenz. (2003). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss Beschluss vom 4.12.2003.Google Scholar
  18. Liljedahl, P., Rolka, K., & Roesken, B. (2007). Belief change as conceptual change. In P. Phillippou (Ed.), Proceedings of CERME 5 (pp. 278–287).Google Scholar
  19. Motzer, R. (2007). Arbeiten mit Lerntagebüchern in Mathematikvorlesungen. In Beiträge zum Mathematikunterricht. Hildesheim: Franzbecker Verlag. https://www.mathematik.tu-dortmund.de/ieem/cms/media/BzMU/BzMU2007/Motzer.pdf. Accessed August 7, 2017.
  20. QUA-LIS NRW (2003). Gruppenpuzzle Pythagoras. http://www.schulentwicklung.nrw.de/materialdatenbank/nutzersicht/materialeintrag.php?matId=5006&marker=. Accessed August 7, 2017.
  21. Rolka, K. (2006). Eine empirische Studie über Beliefs von Lehrenden an der Schnittstelle Mathematikdidaktik und Kognitionspsychologie. http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-15754/Dissertation_Katrin_Rolka.pdf. Accessed August 7, 2017.
  22. Schoenfeld, A. (1985). Mathematical problem solving. Orlando, FL: Academic Press.Google Scholar
  23. Sierpińska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18, 371–397.CrossRefGoogle Scholar
  24. Stake, R. E. (1994). Case studies. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 236–247). Thousand Oaks, CA: Sage.Google Scholar
  25. Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  26. Struve, H. (1990). Grundlagen einer Geometriedidaktik. Mannheim: BI-Verlag.Google Scholar
  27. Tall, D. (2013). How humans learn to think mathematically. New York: Cambridge University Press.CrossRefGoogle Scholar
  28. van Gulik-Gulikers, I. (2010). Nicht-Euklidische Geometrie und ihre Geschichte. In F. Verhulst & S. Walcher (Eds.), Das Zebra-Buch zur Geometrie (pp. 249–292). Heidelberg: Springer-Lehrbuch.Google Scholar
  29. Witzke, I. (2009). Die Entwicklung des Leibnizschen Calculus. Eine Fallstudie zur Theorieentwicklung in der Mathematik. In Texte zur mathematischen Forschung und Lehre (Vol. 69). Berlin: Franzbecker.Google Scholar
  30. Witzke, I. (2015). Different understandings of mathematics. An epistemological approach to bridge the gap between school and university mathematics. In E. Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds.), History and Epistemology in Mathematics Education: Proceedings of the 7th ESU (pp. 304–322). Copenhagen: Danish School of Education, Aarhus University.Google Scholar
  31. Witzke, I., Struve, H., Clark, K., & Stoffels, G. (2016). ÜberPro—A seminar constructed to confront the transition problem from school to university mathematics, based on epistemological and historical ideas of mathematics. MENON: Journal of Educational Research (2nd Thematic Issue), 66–93. http://www.edu.uowm.gr/site/system/files/uberpro_-_a_seminar_constructe_scienc_en.pdf. Accessed August 7, 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ingo Witzke
    • 1
  • Kathleen M. Clark
    • 2
  • Horst Struve
    • 3
  • Gero Stoffels
    • 1
  1. 1.Department of Mathematics, Mathematics Education SectionUniversity of SiegenSiegenGermany
  2. 2.School of Teacher EducationFlorida State UniversityTallahasseeUSA
  3. 3.Institute for the Didactics of Mathematics, University of CologneCologneGermany

Personalised recommendations