Experimentation on the Effects of Mathematical Diversity

Using Ancient Cuneiform Mathematics on Conceptual and Nature of Sciences Aspects
Part of the ICME-13 Monographs book series (ICME13Mo)


We examine, with in-depth teaching recordings and interviews, how tenth grade (15–16-year-old) students react when confronted with an ancient cuneiform clay tablet. The question is whether mathematical diversity can produce new questions (to be further used by teachers) linked to area and measure concepts. We observed conceptual changes with regard to mathematics, but it was difficult for students to make them explicit. In terms of “nature of science” aspects, we were able to document a change in debate content, and we also formulated some precautions. We provide a methodological reflection. We are attentive to the consequences of historical constraints on making links between ancient and current mathematics.


History of sciences Units of measurement Area Mesopotamia Cuneiform tablets Interdisciplinary 



Research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement n. 269804 Open image in new window .


  1. Airasian, P. W., Anderson, L. W., & Krathwohl, D. R. (2013). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. Harlow: Pearson Education Limited.Google Scholar
  2. Artigue, M. (1992). Didactic engineering. In R. Douady & A. Mercier (Ed.), Research in didactique of mathematics. Selected papers (pp. 41–66). Grenoble: La Pensée Sauvage (translation of: Artigue, M. (1990). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281–308). Google Scholar
  3. Barbin, É. (1997). Histoire et enseignement des mathématiques: Pourquoi? Comment? Bulletin de l’Association Mathématique du Québec, 37(1), 20–25.Google Scholar
  4. Brissiaud, R., Clerc, P., Lelièvre, F., & Ouzoulias, A. (2013). J’apprends les maths CM2 Programmes 2008. Paris: Retz.Google Scholar
  5. Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en didactique des mathématiques, 7(2), 33–115.Google Scholar
  6. Chevallard, Y., & Bosch, M. (2001). Les grandeurs en mathématiques au collège. Partie I. Une Atlantide oubliée. Petit x, 55, 5–32.Google Scholar
  7. Cuneiform Digital Library Initiative (CDLI). (n.d.). Archival view of P254900. Resource document. CDLI. http://cdli.ucla.edu/search/archival_view.php?ObjectID=P254900. Accessed August 10, 2017.
  8. Décamp, N., & de Hosson, C. (2015). From didactic transposition to historically based didactic reconstruction: A research framework for integrating history of science in science classrooms. Paper presented at the European Science Education Research Association (ESERA) 2015 Conference, Science Education Research: Engaging Learners for a Sustainable Future, Helsinki, Finland.Google Scholar
  9. de Varent, C. (2015). Apports de la pluralité de systèmes mathématiques anciens pour l’enseignement. In L. Theis (Ed.), Actes du Colloque de l’Espace Mathématique Francophone 2015 (pp. 463–476). Alger: Université d'Alger. http://emf2015.usthb.dz/actes/ACTESEMF2015COMPLET.pdf. Accessed August 9, 2017.
  10. Doussot, S., & Vézier, A. (2014). Des savoirs comme pratiques de problématisation: une approche socio-cognitive en didactique de l’histoire. Education & Didactique, 3(3), 7–27.Google Scholar
  11. Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de didactique et de sciences cognitives, 5, 37–65.Google Scholar
  12. Fried, M. N. (2008). ICMI, the history of mathematics, and the future of mathematics education. International Journal for the History of Mathematics Education, 8(3), 103–108.Google Scholar
  13. Guillemette, D. (2015). L’histoire des mathématiques et la formation des enseignants du secondaire: sur l’expérience du dépaysement épistémologique des étudiants (Unpublished doctoral dissertation). Université du Québecà Montréal, Montréal Canada.Google Scholar
  14. Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235–261.CrossRefGoogle Scholar
  15. Mason, J., & Johnston-Wilder, S. (Eds.). (2004). Fundamental constructs in mathematics education. London: RoutledgeFalmer.Google Scholar
  16. Neugebauer, O., & Sachs, A. J. (1984). Mathematical and metrological texts. Journal of Cuneiform Studies, 36, 243–251.CrossRefGoogle Scholar
  17. Outhred, L., & Mitchelmore, M. (1992). Representation of area: A pictorial perspective. In W. Geeslin & K. Graham (Eds.), Proceedings of the 16th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 194–201). Durham, NH: University of New Hampshire, International Group for the Psychology of Mathematics Education.Google Scholar
  18. Outhred, L., & Mitchelmore, M. (1996). Children’s intuitive understanding of area measurement. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th International Conference for the Psychology of Mathematics Education (Vol. 4, pp. 91–98). Valencia: International Group for the Psychology of Mathematics Education.Google Scholar
  19. Perrin-Glorian, M. J. (1990). L’aire et la mesure. Petit x, 24, 5–36.Google Scholar
  20. Proust, C. (2007). Tablettes mathématiques de Nippur. Istanbul: IFEA, De Boccard.Google Scholar
  21. Proust, C. (2009). Numerical and metrological graphemes: From cuneiform to transliteration. Cuneiform Digital Library Journal, 2009, 1. http://cdli.ucla.edu/pubs/cdlj/2009/cdlj2009_001.html. Accessed August 9, 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ERC SAW—SPHERE—LDAR—CNRS; SPHERE UMR 7219Université Paris DiderotParisFrance

Personalised recommendations