3D Visibility Representations of 1-planar Graphs

  • Patrizio Angelini
  • Michael A. Bekos
  • Michael Kaufmann
  • Fabrizio MontecchianiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)


We prove that every 1-planar graph G has a z-parallel visibility representation, i.e., a 3D visibility representation in which the vertices are isothetic disjoint rectangles parallel to the xy-plane, and the edges are unobstructed z-parallel visibilities between pairs of rectangles. In addition, the constructed representation is such that there is a plane that intersects all the rectangles, and this intersection defines a bar 1-visibility representation of G.


  1. 1.
    Angelini, P., Bekos, M.A., Kaufmann, M., Montecchiani, F.: 3D visibility representations of 1-planar graphs. CoRR abs/1708.06196 (2017).
  2. 2.
    Arleo, A., et al.: Visibility representations of boxes in 2.5 dimensions. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 251–265. Springer, Cham (2016). CrossRefGoogle Scholar
  3. 3.
    Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. In: Aronov, B., Katz, M.J. (eds.) SoCG 2017. LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  4. 4.
    Biedl, T.C., Liotta, G., Montecchiani, F.: On visibility representations of non-planar graphs. In: Fekete, S.P., Lubiw, A. (eds.) SoCG 2016. LIPIcs, vol. 51, pp. 19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  5. 5.
    Bodendiek, R., Schumacher, H.J., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G. Ringel. Abh. Math. Sem. Univ. Hamburg 53, 41–52 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bose, P., Everett, H., Fekete, S.P., Houle, M.E., Lubiw, A., Meijer, H., Romanik, K., Rote, G., Shermer, T.C., Whitesides, S., Zelle, C.: A visibility representation for graphs in three dimensions. J. Graph Algorithms Appl. 2(3), 1–16 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dean, A.M., Evans, W.S., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.: Bar \(k\)-visibility graphs. J. Graph Algorithms Appl. 11(1), 45–59 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dean, A.M., Hutchinson, J.P.: Rectangle-visibility representations of bipartite graphs. Discr. Appl. Math. 75(1), 9–25 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood (1999)zbMATHGoogle Scholar
  11. 11.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Di Giacomo, E., Didimo, W., Evans, W.S., Liotta, G., Meijer, H., Montecchiani, F., Wismath, S.K.: Ortho-polygon visibility representations of embedded graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 280–294. Springer, Cham (2016). CrossRefGoogle Scholar
  13. 13.
    Evans, W.S., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.K.: Bar 1-visibility graphs vs. other nearly planar graphs. J. Graph Algorithms Appl. 18(5), 721–739 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cobos, F.J., Dana, J.C., Hurtado, F., Márquez, A., Mateos, F.: On a visibility representation of graphs. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 152–161. Springer, Heidelberg (1996). CrossRefGoogle Scholar
  15. 15.
    Fekete, S.P., Meijer, H.: Rectangle and box visibility graphs in 3D. Int. J. Comput. Geometry Appl. 9(1), 1–28 (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hong, S.H., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: algorithmics and combinatorics (Dagstuhl Seminar 16452). Dagstuhl Rep. 6(11), 35–62 (2017)Google Scholar
  18. 18.
    Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness two graphs. Comput. Geom. 13(3), 161–171 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theor. 72(1), 30–71 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liotta, G.: Graph drawing beyond planarity: some results and open problems. In: ICTCS 2014. CEUR Workshop Proceedings, vol. 1231, pp. 3–8. (2014)
  22. 22.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discr. Comput. Geom. 1, 343–353 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shermer, T.C.: On rectangle visibility graphs. III. External visibility and complexity. In: Fiala, F., Kranakis, E., Sack, J. (eds.) CCCG 1996, pp. 234-239. Carleton University Press, Ottawa (1996)Google Scholar
  25. 25.
    Štola, J.: Unimaximal sequences of pairs in rectangle visibility drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 61–66. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  26. 26.
    Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar graphs. Discr. Comput. Geom. 1, 321–341 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Thomassen, C.: Plane representations of graphs. In: Progress in Graph Theory, pp. 43–69. AP (1984)Google Scholar
  28. 28.
    Wismath, S.K.: Characterizing bar line-of-sight graphs. In: O’Rourke, J. (ed.) SoCG 1985, pp. 147–152. ACM (1985)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Michael A. Bekos
    • 1
  • Michael Kaufmann
    • 1
  • Fabrizio Montecchiani
    • 2
    Email author
  1. 1.Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.Dipartimento di IngegneriaUniversitá degli Studi di PerugiaPerugiaItaly

Personalised recommendations