Advertisement

Experimental Analysis of the Accessibility of Drawings with Few Segments

  • Philipp Kindermann
  • Wouter Meulemans
  • André Schulz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)

Abstract

The visual complexity of a graph drawing is defined as the number of geometric objects needed to represent all its edges. In particular, one object may represent multiple edges, e.g., one needs only one line segment to draw two collinear incident edges. We study the question if drawings with few segments have a better aesthetic appeal and help the user to asses the underlying graph. We design an experiment that investigates two different graph types (trees and sparse graphs), three different layout algorithms for trees, and two different layout algorithms for sparse graphs. We asked the users to give an aesthetic ranking on the layouts and to perform a furthest-pair or shortest-path task on the drawings.

Notes

Acknowledgments

The authors would like to thank all anonymous volunteers who participated in the presented user study.

References

  1. 1.
    Bar, M., Neta, M.: Humans prefer curved visual objects. Psychol. Sci. 17(8), 645–648 (2006)CrossRefGoogle Scholar
  2. 2.
    Bostock, M., Ogievetsky, V., Heer, J.: D\({^3}\) data-driven documents. IEEE Trans. Visual Comput. Graphics 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  3. 3.
    Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)Google Scholar
  5. 5.
    Hatzinger, R., Dirrich, R.: prefmod: an R package for modeling preferences based on paired comparisons, rankings, or ratings. J. Statist. Softw. 48(10), 1–31 (2011)Google Scholar
  6. 6.
    Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar graphs with few geometric primitives. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 316–329. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68705-6_24 CrossRefGoogle Scholar
  7. 7.
    Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessibility of drawings with few segments. Arxiv report arXiv: 1708.09815 (2017)
  8. 8.
    Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete Math. 7(2), 172–183 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 742–744 (1918)zbMATHGoogle Scholar
  10. 10.
    Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Software Eng. 7(2), 223–228 (1981)CrossRefGoogle Scholar
  11. 11.
    Rusu, A., Yao, C., Crowell, A.: A planar straight-line grid drawing algorithm for high degree general trees with user-specified angular coefficient. In: Proceedings of 12th International Conference Information Visualization (IV 2008), pp. 600–609. IEEE Computer Society (2008)Google Scholar
  12. 12.
    Schulz, A.: Drawing graphs with few arcs. J. Graph Algorithms Appl. 19(1), 393–412 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Vessel, E., Rubin, N.: Beauty and the beholder: highly individual taste for abstract, but not real-world images. J. Vis. 10(2), 1–14 (2010)CrossRefGoogle Scholar
  14. 14.
    Walker II, J.Q.: A node-positioning algorithm for general trees. Softw. Pract. Exper. 20(7), 685–705 (1990)Google Scholar
  15. 15.
    Welzl, E., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. 7, 303–325 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Philipp Kindermann
    • 1
  • Wouter Meulemans
    • 2
  • André Schulz
    • 1
  1. 1.LG Theoretische InformatikFernUniversität in HagenHagenGermany
  2. 2.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations