Advertisement

Gap-Planar Graphs

  • Sang Won Bae
  • Jean-Francois Baffier
  • Jinhee Chun
  • Peter Eades
  • Kord Eickmeyer
  • Luca Grilli
  • Seok-Hee Hong
  • Matias Korman
  • Fabrizio Montecchiani
  • Ignaz Rutter
  • Csaba D. Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)

Abstract

We introduce the family of k-gap-planar graphs for \(k \ge 0\), i.e., graphs that have a drawing in which each crossing is assigned to one of the two involved edges and each edge is assigned at most k of its crossings. This definition finds motivation in edge casing, as a \(k\)-gap-planar graph can be drawn crossing-free after introducing at most k local gaps per edge. We obtain results on the maximum density, drawability of complete graphs, complexity of the recognition problem, and relationships with other families of beyond-planar graphs.

References

  1. 1.
    Ackerman, E., Keszegh, B., Vizer, M.: On the size of planarly connected crossing graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 311–320. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_24 CrossRefGoogle Scholar
  2. 2.
    Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Combin. Theory Ser. A 114(3), 563–571 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Angelini, P., et al.: On the relationship between k-planar and k-quasi-planar graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 59–74. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68705-6_5 CrossRefGoogle Scholar
  5. 5.
    Appel, A., Rohlf, F.J., Stein, A.J.: The haloed line effect for hidden line elimination. SIGGRAPH Comput. Graph. 13(2), 151–157 (1979)CrossRefGoogle Scholar
  6. 6.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bae, S.W., Baffier, J.F., Chun, J., Eades, P., Eickmeyer, K., Grilli, L., Hong, S.H., Korman, M., Montecchiani, F., Rutter, I., Tóth, C.D.: Gap-planar graphs. CoRR abs/1708.07653 (2017). https://arxiv.org/abs/1708.07653
  9. 9.
    Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.H., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79, 1–27 (2016)MathSciNetMATHGoogle Scholar
  10. 10.
    Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On the density of non-simple 3-planar graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 344–356. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_27 CrossRefGoogle Scholar
  12. 12.
    Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Symvonis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comput. Sci. 589, 76–86 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636, 1–16 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Brinkmann, G., Goedgebeur, J., McKay, B.D.: The generation of fullerenes. J. Chem. Inf. Model. 52(11), 2910–2918 (2012)CrossRefGoogle Scholar
  15. 15.
    Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann, M., Montecchiani, F., Nöllenburg, M., Wolff, A.: Progress on partial edge drawings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 67–78. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36763-2_7 CrossRefGoogle Scholar
  16. 16.
    Bruckdorfer, T., Kaufmann, M.: Mad at edge crossings? Break the edges!. In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 40–50. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30347-0_7 CrossRefGoogle Scholar
  17. 17.
    Cheong, O., Har-Peled, S., Kim, H., Kim, H.-S.: On the number of edges of fan-crossing free graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 163–173. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45030-3_16 CrossRefGoogle Scholar
  18. 18.
    Dehkordi, H.R., Eades, P., Hong, S., Nguyen, Q.H.: Circular right-angle crossing drawings in linear time. Theor. Comput. Sci. 639, 26–41 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory. Springer, New York (2012).  https://doi.org/10.1007/978-1-4614-0110-0_10 Google Scholar
  20. 20.
    Eades, P., Hong, S., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system. Theor. Comput. Sci. 513, 65–76 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Eppstein, D., van Kreveld, M.J., Mumford, E., Speckmann, B.: Edges and switches, tunnels and bridges. Comput. Geom. 42(8), 790–802 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Fox, J., Pach, J., Suk, A.: The number of edges in \(k\)-quasi-planar graphs. SIAM J. Discr. Math. 27(1), 550–561 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Frank, A., Gyárfás, A.: How to orient the edges of a graph? Colloq. Math. Soc. János Bolyai 18, 353–364 (1978)MathSciNetMATHGoogle Scholar
  24. 24.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)MATHGoogle Scholar
  25. 25.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Hoffmann, M., Tóth, C.D.: Two-planar graphs are quasiplanar. CoRR abs/1705.05569 (2017). http://arxiv.org/abs/org/abs/1705.05569
  27. 27.
    Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 406–421. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53174-7_29 CrossRefGoogle Scholar
  29. 29.
    Hong, S.H., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: algorithmics and combinatorics (Dagstuhl Seminar 16452). Dagstuhl Rep. 6(11), 35–62 (2017)Google Scholar
  30. 30.
    Hong, S.H., Tokuyama, T.: Algorithmics for beyond planar graphs. In: NII Shonan Meeting, Shonan Village Center (2016). http://shonan.nii.ac.jp/shonan/blog/2015/11/15/3972/
  31. 31.
    Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014)CrossRefGoogle Scholar
  32. 32.
    Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR abs/1403.6184 (2014). http://arxiv.org/abs/org/abs/1403.6184
  33. 33.
    Kleitman, D.J.: The crossing number of \({K}_{5, n}\). J. Combin. Theor. 9(4), 315–323 (1970)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 59–74 (2017).  https://doi.org/10.1007/978-3-319-68705-6_5 MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theor. 72(1), 30–71 (2013)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Liotta, G.: Graph drawing beyond planarity: some results and open problems. In: ICTCS 2014. CEUR Workshop Proceedings, vol. 1231, pp. 3–8 (2014). CEUR-WS.org
  37. 37.
    Pach, J., Radoičić, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discrete Comput. Geom. 36(4), 527–552 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear \(0-1\) programming problems, with applications to graph theory. Networks 12(2), 141–159 (1982)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Venkateswaran, V.: Minimizing maximum indegree. Discr. Appl. Math. 143(13), 374–378 (2004)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Zarankiewicz, C.: On a problem of P. Turan concerning graphs. Fund. Math. 41(1), 137–145 (1955)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sang Won Bae
    • 1
  • Jean-Francois Baffier
    • 2
  • Jinhee Chun
    • 3
  • Peter Eades
    • 4
  • Kord Eickmeyer
    • 5
  • Luca Grilli
    • 6
  • Seok-Hee Hong
    • 4
  • Matias Korman
    • 3
  • Fabrizio Montecchiani
    • 6
  • Ignaz Rutter
    • 7
  • Csaba D. Tóth
    • 8
  1. 1.Kyonggi UniversitySuwonSouth Korea
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.Tohoku UniversitySendaiJapan
  4. 4.University of SydneySydneyAustralia
  5. 5.TU DarmstadtDarmstadtGermany
  6. 6.University of PerugiaPerugiaItaly
  7. 7.TU EindhovenEindhovenThe Netherlands
  8. 8.California State University NorthridgeLos AngelesUSA

Personalised recommendations