Advertisement

1-Fan-Bundle-Planar Drawings of Graphs

  • Patrizio Angelini
  • Michael A. Bekos
  • Michael Kaufmann
  • Philipp Kindermann
  • Thomas Schneck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)

Abstract

Edge bundling is an important concept heavily used for graph visualization purposes. To enable the comparison with other established near-planarity models in graph drawing, we formulate a new edge-bundling model which is inspired by the recently introduced fan-planar graphs. In particular, we restrict the bundling to the endsegments of the edges. Similarly to 1-planarity, we call our model 1-fan-bundle-planarity, as we allow at most one crossing per bundle.

For the two variants where we allow either one or, more naturally, both endsegments of each edge to be part of bundles, we present edge density results and consider various recognition questions, not only for general graphs, but also for the outer and 2-layer variants. We conclude with a series of challenging questions.

References

  1. 1.
    Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997)Google Scholar
  3. 3.
    Angelini, P., Bekos, M.A., Kaufmann, M., Kindermann, P., Schneck, T.: 1-fan-bundle-planar drawings of graphs. CoRR arXiv:1702.06163 (2017)
  4. 4.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 198–209. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_17 Google Scholar
  7. 7.
    Binucci, C., Chimani, M., Didimo, W., Gronemann, M., Klein, K., Kratochvíl, J., Montecchiani, F., Tollis, I.G.: Algorithms and characterizations for 2-layer fan-planarity: from caterpillar to stegosaurus. J. Graph Algorithms Appl. 21(1), 81–102 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Binucci, C., Giacomo, E.D., Didimo, W., Montecchiani, F., Patrignani, M., Symvonis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comput. Syst. 589, 76–86 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brandenburg, F.J.: A simple quasi-planar drawing of \(K_{10}\). In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 603–604. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2 Google Scholar
  10. 10.
    Buchin, K., Speckmann, B., Verbeek, K.: Flow map layout via spiral trees. IEEE Trans. Vis. Comput. Graph. 17(12), 2536–2544 (2011)CrossRefGoogle Scholar
  11. 11.
    Cheong, O., Har-Peled, S., Kim, H., Kim, H.: On the number of edges of fan-crossing free graphs. Algorithmica 73(4), 673–695 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: visualizing non-planar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24595-7_1 CrossRefGoogle Scholar
  13. 13.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Syst. 412(39), 5156–5166 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fink, M., Hershberger, J., Suri, S., Verbeek, K.: Bundled crossings in embedded graphs. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 454–468. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49529-2_34 CrossRefGoogle Scholar
  15. 15.
    Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  16. 16.
    Giacomo, E.D., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing drawings. Algorithmica 68(4), 954–997 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)CrossRefGoogle Scholar
  19. 19.
    Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. arXiv:1403.6184 (2014)
  21. 21.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamb. 29, 107–117 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Telea, A., Ersoy, O.: Image-based edge bundles: simplified visualization of large graphs. Comput. Graph. Forum 29(3), 843–852 (2010)CrossRefGoogle Scholar
  24. 24.
    Zhou, H., Xu, P., Yuan, X., Qu, H.: Edge bundling in information visualization. Tsinghua Sci. Technol. 18(2), 145–156 (2013)CrossRefGoogle Scholar
  25. 25.
    Zhou, H., Yuan, X., Qu, H., Cui, W., Chen, B.: Visual clustering in parallel coordinates. Comput. Graph. Forum 27(3), 1047–1054 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Michael A. Bekos
    • 1
  • Michael Kaufmann
    • 1
  • Philipp Kindermann
    • 2
  • Thomas Schneck
    • 1
  1. 1.Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.LG Theoretische InformatikFernUniversität in HagenHagenGermany

Personalised recommendations