Planar L-Drawings of Directed Graphs

  • Steven Chaplick
  • Markus Chimani
  • Sabine Cornelsen
  • Giordano Da Lozzo
  • Martin Nöllenburg
  • Maurizio Patrignani
  • Ioannis G. Tollis
  • Alexander Wolff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)


We study planar drawings of directed graphs in the L-drawing standard. We provide necessary conditions for the existence of these drawings and show that testing for the existence of a planar L-drawing is an NP-complete problem. Motivated by this result, we focus on upward-planar L-drawings. We show that directed st-graphs admitting an upward- (resp. upward-rightward-) planar L-drawing are exactly those admitting a bitonic (resp. monotonically increasing) st-ordering. We give a linear-time algorithm that computes a bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or reports that there exists none.


  1. 1.
    Angelini, P., Da Lozzo, G., Di Bartolomeo, M., Di Donato, V., Patrignani, M., Roselli, V., Tollis, I.G.: L-drawings of directed graphs. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 134–147. Springer, Heidelberg (2016). CrossRefGoogle Scholar
  2. 2.
    Barth, W., Mutzel, P., Yıldız, C.: A new approximation algorithm for bend minimization in the Kandinsky model. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 343–354. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  3. 3.
    Bekos, M.A., Kaufmann, M., Krug, R., Siebenhaller, M.: The effect of almost-empty faces on planar Kandinsky drawings. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 352–364. Springer, Cham (2015). CrossRefGoogle Scholar
  4. 4.
    Bläsius, T., Brückner, G., Rutter, I.: Complexity of higher-degree orthogonal graph embedding in the Kandinsky model. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 161–172. Springer, Heidelberg (2014). Google Scholar
  5. 5.
    Brückner, G.: Higher-degree orthogonal graph drawing with flexibility constraints. Bachelor thesis, Department of Informatics, KIT (2013).
  6. 6.
    Chaplick, S., Chimani, M., Cornelsen, S., Da Lozzo, G., Nöllenburg, M., Patrignani, M., Tollis, I.G., Wolff, A.: Planar L-drawings of directed graphs. arXiv:1708.09107, Cornell University (2017)
  7. 7.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg (1990). CrossRefGoogle Scholar
  10. 10.
    Didimo, W., Liotta, G., Patrignani, M.: On the complexity of HV-rectilinear planarity testing. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 343–354. Springer, Heidelberg (2014). Google Scholar
  11. 11.
    Eigelsperger, M.: Automatic layout of UML class diagrams: a topology-shape-metrics approach. Ph.D. thesis, Eberhard-Karls-Universität zu Tübingen (2003)Google Scholar
  12. 12.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996). CrossRefGoogle Scholar
  13. 13.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gronemann, M.: Bitonic st-orderings of biconnected planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 162–173. Springer, Heidelberg (2014). Google Scholar
  15. 15.
    Gronemann, M.: Algorithms for incremental planar graph drawing and two-page book embeddings. Ph.D. thesis, University of Cologne (2015).
  16. 16.
    Gronemann, M.: Bitonic st-orderings for upward planar graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 222–235. Springer, Cham (2016). CrossRefGoogle Scholar
  17. 17.
    Kornaropoulos, E.M., Tollis, I.G.: Overloaded orthogonal drawings. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 242–253. Springer, Heidelberg (2012). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universität WürzburgWürzburgGermany
  2. 2.Universität OsnabrückOsnabrückGermany
  3. 3.Universität KonstanzKonstanzGermany
  4. 4.University of CaliforniaIrvineUSA
  5. 5.TU WienViennaAustria
  6. 6.Roma Tre UniversityRomeItaly
  7. 7.University of CreteHeraklionGreece

Personalised recommendations