Advertisement

Planar L-Drawings of Directed Graphs

  • Steven Chaplick
  • Markus Chimani
  • Sabine Cornelsen
  • Giordano Da Lozzo
  • Martin Nöllenburg
  • Maurizio Patrignani
  • Ioannis G. Tollis
  • Alexander Wolff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)

Abstract

We study planar drawings of directed graphs in the L-drawing standard. We provide necessary conditions for the existence of these drawings and show that testing for the existence of a planar L-drawing is an NP-complete problem. Motivated by this result, we focus on upward-planar L-drawings. We show that directed st-graphs admitting an upward- (resp. upward-rightward-) planar L-drawing are exactly those admitting a bitonic (resp. monotonically increasing) st-ordering. We give a linear-time algorithm that computes a bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or reports that there exists none.

References

  1. 1.
    Angelini, P., Da Lozzo, G., Di Bartolomeo, M., Di Donato, V., Patrignani, M., Roselli, V., Tollis, I.G.: L-drawings of directed graphs. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 134–147. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49192-8_11 CrossRefGoogle Scholar
  2. 2.
    Barth, W., Mutzel, P., Yıldız, C.: A new approximation algorithm for bend minimization in the Kandinsky model. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 343–354. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70904-6_33 CrossRefGoogle Scholar
  3. 3.
    Bekos, M.A., Kaufmann, M., Krug, R., Siebenhaller, M.: The effect of almost-empty faces on planar Kandinsky drawings. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 352–364. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20086-6_27 CrossRefGoogle Scholar
  4. 4.
    Bläsius, T., Brückner, G., Rutter, I.: Complexity of higher-degree orthogonal graph embedding in the Kandinsky model. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 161–172. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44777-2_14 Google Scholar
  5. 5.
    Brückner, G.: Higher-degree orthogonal graph drawing with flexibility constraints. Bachelor thesis, Department of Informatics, KIT (2013). https://i11www.iti.kit.edu/_media/teaching/theses/ba-brueckner-13.pdf
  6. 6.
    Chaplick, S., Chimani, M., Cornelsen, S., Da Lozzo, G., Nöllenburg, M., Patrignani, M., Tollis, I.G., Wolff, A.: Planar L-drawings of directed graphs. arXiv:1708.09107, Cornell University (2017)
  7. 7.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996).  https://doi.org/10.1137/S0097539794280736 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988).  https://doi.org/10.1016/0304-3975(88)90123-5 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg (1990).  https://doi.org/10.1007/BFb0032061 CrossRefGoogle Scholar
  10. 10.
    Didimo, W., Liotta, G., Patrignani, M.: On the complexity of HV-rectilinear planarity testing. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 343–354. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_29 Google Scholar
  11. 11.
    Eigelsperger, M.: Automatic layout of UML class diagrams: a topology-shape-metrics approach. Ph.D. thesis, Eberhard-Karls-Universität zu Tübingen (2003)Google Scholar
  12. 12.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0021809 CrossRefGoogle Scholar
  13. 13.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001).  https://doi.org/10.1137/S0097539794277123 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gronemann, M.: Bitonic st-orderings of biconnected planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 162–173. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_14 Google Scholar
  15. 15.
    Gronemann, M.: Algorithms for incremental planar graph drawing and two-page book embeddings. Ph.D. thesis, University of Cologne (2015). http://kups.ub.uni-koeln.de/id/eprint/6329
  16. 16.
    Gronemann, M.: Bitonic st-orderings for upward planar graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 222–235. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_18. https://arxiv.org/abs/1608.08578 CrossRefGoogle Scholar
  17. 17.
    Kornaropoulos, E.M., Tollis, I.G.: Overloaded orthogonal drawings. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 242–253. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25878-7_24 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universität WürzburgWürzburgGermany
  2. 2.Universität OsnabrückOsnabrückGermany
  3. 3.Universität KonstanzKonstanzGermany
  4. 4.University of CaliforniaIrvineUSA
  5. 5.TU WienViennaAustria
  6. 6.Roma Tre UniversityRomeItaly
  7. 7.University of CreteHeraklionGreece

Personalised recommendations