Drawing Dynamic Graphs Without Timeslices

  • Paolo Simonetto
  • Daniel Archambault
  • Stephen Kobourov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)


Timeslices are often used to draw and visualize dynamic graphs. While timeslices are a natural way to think about dynamic graphs, they are routinely imposed on continuous data. Often, it is unclear how many timeslices to select: too few timeslices can miss temporal features such as causality or even graph structure while too many timeslices slows the drawing computation. We present a model for dynamic graphs which is not based on timeslices, and a dynamic graph drawing algorithm, DynNoSlice, to draw graphs in this model. In our evaluation, we demonstrate the advantages of this approach over timeslicing on continuous data sets.


  1. 1.
    Citevis citation datafile. Accessed 28 Aug 2017
  2. 2.
    Archambault, D., Purchase, H.C.: Mental map preservation helps user orientation in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 475–486. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  3. 3.
    Archambault, D., Purchase, H.C.: Can animation support the visualization of dynamic graphs? Inf. Sci. 330, 495–509 (2016)CrossRefGoogle Scholar
  4. 4.
    Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans. Vis. Comput. Graph. 17(4), 539–552 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S.: A descriptive framework for temporal data visualizations based on generalized space-time cubes. In: Computer Graphics Forum (2016)Google Scholar
  6. 6.
    Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., Dragicevic, P.: Time curves: folding time to visualize patterns of temporal evolution in data. IEEE Trans. Vis. Comput. Graphics (InfoVis 2015) 22(1), 559–568 (2016)CrossRefGoogle Scholar
  7. 7.
    Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing dynamic graphs. In: Borgo, R., Maciejewski, R., Viola, I. (eds.) EuroVis - STARSs. The Eurographics Association (2014)Google Scholar
  8. 8.
    Brandes, U., Corman, S.R.: Visual unrolling of network evolution and the analysis of dynamic discourse. Inform. Vis. 2(1), 40–50 (2003)CrossRefGoogle Scholar
  9. 9.
    Brandes, U., Mader, M.: A quantitative comparison of stress-minimization approaches for offline dynamic graph drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  10. 10.
    Brandes, U., Wagner, D.: Analysis and visualization of social networks. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 321–340. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  11. 11.
    Bruß, I., Frick, A.: Fast interactive 3-D graph visualization. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 99–110. Springer, Heidelberg (1996). CrossRefGoogle Scholar
  12. 12.
    Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting for scalable dynamic graph visualization. IEEE Trans Vis. Comput. Graphics (InfoVis 2011) 17(12), 2344–2353 (2011)CrossRefGoogle Scholar
  13. 13.
    Cordeil, M., Dwyer, T., Klein, K., Laha, B., Marriott, K., Thomas, B.H.: Immersive collaborative analysis of network connectivity: CAVE-style or head-mounted display? IEEE Trans. Vis. Comput. Graphics (InfoVis 2016) 23(1), 441–450 (2017)CrossRefGoogle Scholar
  14. 14.
    Crnovrsanin, T., Chu, J., Ma, K.-L.: An incremental layout method for visualizing online dynamic graphs. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 16–29. Springer, Cham (2015). CrossRefGoogle Scholar
  15. 15.
    Cruz, I.F., Twarog, J.P.: 3D graph drawing with simulated annealing. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 162–165. Springer, Heidelberg (1996). CrossRefGoogle Scholar
  16. 16.
    Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graphics 15(4), 301–331 (1996)CrossRefGoogle Scholar
  17. 17.
    Diehl, S., Görg, C.: Graphs, they are changing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–31. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  18. 18.
    Diehl, S., Görg, C., Kerren, A.: Preserving the mental map using foresighted layout. In Eurographics/IEEE VGTC Symposium on Visualization (VisSym 2001), pp. 175–184 (2001)Google Scholar
  19. 19.
    Dwyer, T., Eades, P.: Visualising a fund manager flow graph with columns and worms. In: Proceedings of the International Conference on Information Visualisation (IV 2002), pp. 147–152 (2002)Google Scholar
  20. 20.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  21. 21.
    Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: layout algorithms and visualization schemes. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 437–449. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  22. 22.
    Farrugia, M., Quigley, A.: Effective temporal graph layout: a comparative study of animation versus static display methods. J. Inform. Vis. 10(1), 47–64 (2011)Google Scholar
  23. 23.
    Forrester, D., Kobourov, S.G., Navabi, A., Wampler, K., Yee, G.V.: Graphael: a system for generalized force-directed layouts. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 454–464. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  24. 24.
    Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected graphs (extended abstract and system demonstration). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995). CrossRefGoogle Scholar
  25. 25.
    Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Trans. Vis. Comput. Graphics 14(4), 727–740 (2008)CrossRefGoogle Scholar
  26. 26.
    Gajer, P., Kobourov, S.G.: GRIP: graph drawing with intelligent placement. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222–228. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  27. 27.
    Gansner, E.R., Hu, Y.: A maxent-stress model for graph layout. IEEE Trans. Vis. Comput. Graphics 19(6), 927–940 (2013)CrossRefGoogle Scholar
  28. 28.
    Gorochowski, T.E., Di Bernardo, M., Grierson, C.S.: Using aging to visually uncover evolutionary processes on networks. IEEE Trans. Vis. Comput. Graphics 18(8), 1343–1352 (2012)CrossRefGoogle Scholar
  29. 29.
    Grayson, S., Wade, K., Meaney, G., Greene, D.: Sensibility of different sliding windows in constructing co-occurrence networks from literature. In: Bozic, B., Mendel-Gleason, G., Debruyne, C., O’Sullivan, D. (eds.) Proceedings of 2nd International Workshop on Computational History and Data-Driven Humanities, pp. 65–77 (2016)Google Scholar
  30. 30.
    Groh, G., Hanstein, H., Wörndl, W.: Interactively visualizing dynamic social networks with DySoN. In: Workshop on Visual Interfaces to the Social and the Semantic Web (VISSW 2009), February 2009Google Scholar
  31. 31.
    Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  32. 32.
    Itoh, M., Yoshinaga, N., Toyoda, M., Kitsuregawa, M.: Analysis and visualization of temporal changes in bloggers’ activities and interests. In: IEEE Pacific Visualization Symposium (PacificVis 2012), pp. 57–64 (2012)Google Scholar
  33. 33.
    Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–245. Springer, Heidelberg (2014). Google Scholar
  34. 34.
    Landgraf, B.: 3D graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 172–192. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  35. 35.
    Liu, G., Austen, E.L., Booth, K.S., Fisher, B.D., Argue, R., Rempel, M.I., Enns, J.T.: Multiple-object tracking is based on scene, not retinal, coordinates. J. Exp. Psychol. Hum. Percept. Perform. 31(2), 235–247 (2005)CrossRefGoogle Scholar
  36. 36.
    Liu, Q., Hu, Y., Shi, L., Mu, X., Zhang, Y., Tang, J.: EgoNetCloud: event-based egocentric dynamic network visualization. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST 2015), pp. 65–72. IEEE Computer Society (2015)Google Scholar
  37. 37.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Visual Lang. Comput. 6(2), 183–210 (1995)CrossRefGoogle Scholar
  38. 38.
    Munzner, T.: H3: laying out large directed graphs in 3D hyperbolic space. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis 1997), pp. 2–10, 1997Google Scholar
  39. 39.
    Newcomb, T.M.: The Acquaintance Process. New York, Holt, Reinhard & Winston (1961)CrossRefGoogle Scholar
  40. 40.
    Ortmann, M., Klimenta, M., Brandes, U.: A sparse stress model. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 18–32. Springer, Cham (2016). CrossRefGoogle Scholar
  41. 41.
    Parker, G., Franck, G., Ware, C.: Visualization of large nested graphs in 3D: navigation and interaction. J. Visual Lang. Comput. 9(3), 299–317 (1998)CrossRefGoogle Scholar
  42. 42.
    Pylyshyn, Z.W., Storm, R.W.: Tracking multiple independant targets: Evidence for a parallel tracking mechanism. Spat. Vis. 3(3), 179–197 (1988)CrossRefGoogle Scholar
  43. 43.
    Rauber, P.E., Falcão, A.X., Telea, A.C.: Visualizing time-dependent data using dynamic t-SNE. In: Bertini, E., Elmqvist, N., Wischgoll, T. (eds.) EuroVis 2016, Short Papers. Eurographics Association (2016)Google Scholar
  44. 44.
    Sallaberry, A., Muelder, C., Ma, K.-L.: Clustering, visualizing, and navigating for large dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 487–498. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  45. 45.
    Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE Trans. Vis. Comput. Graphics (InfoVis 2006) 12(5), 733–740 (2006)CrossRefGoogle Scholar
  46. 46.
    Simonetto, P., Archambault, D., Auber, D., Bourqui, R.: ImPrEd: an improved force-directed algorithm that prevents nodes from crossing edges. Comput. Graphics Forum (EuroVis 2011) 30(3), 1071–1080 (2011)CrossRefGoogle Scholar
  47. 47.
    Simonetto, P., Archambault, D., Scheidegger, C.: A simple approach for boundary improvement of Euler diagrams. IEEE Trans. Vis. Comput. Graphics (InfoVis 2015) 22(1), 678–687 (2016)CrossRefGoogle Scholar
  48. 48.
    Tversky, B., Morrison, J., Betrancourt, M.: Animation: can it facilitate? Int. J. Hum Comput Stud. 57(4), 247–262 (2002)CrossRefGoogle Scholar
  49. 49.
    van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Dynamic network visualization with extended massive sequence views. IEEE Trans. Vis. Comput. Graphics 20(8), 1087–1099 (2014)CrossRefGoogle Scholar
  50. 50.
    van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Reducing snapshots to points: a visual analytics approach to dynamic network exploration. IEEE Trans. Vis. Comput. Graphics 22(1), 1–10 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Paolo Simonetto
    • 1
  • Daniel Archambault
    • 1
  • Stephen Kobourov
    • 2
  1. 1.Swansea UniversitySwanseaUK
  2. 2.University of ArizonaTucsonUSA

Personalised recommendations