Anisotropic Radial Layout for Visualizing Centrality and Structure in Graphs

  • Mukund Raj
  • Ross T. Whitaker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)


This paper presents a novel method for layout of undirected graphs, where nodes (vertices) are constrained to lie on a set of nested, simple, closed curves. Such a layout is useful to simultaneously display the structural centrality and vertex distance information for graphs in many domains, including social networks. Closed curves are a more general constraint than the previously proposed circles, and afford our method more flexibility to preserve vertex relationships compared to existing radial layout methods. The proposed approach modifies the multidimensional scaling (MDS) stress to include the estimation of a vertex depth or centrality field as well as a term that penalizes discord between structural centrality of vertices and their alignment with this carefully estimated field. We also propose a visualization strategy for the proposed layout and demonstrate its effectiveness using three social network datasets.


Centrality Graph layout Network visualization 


  1. 1.
    Bachmaier, C.: A radial adaptation of the sugiyama framework for visualizing hierarchical information. IEEE Trans. Visual Comput. Graphics 13(3), 583–594 (2007)CrossRefGoogle Scholar
  2. 2.
    Baingana, B., Giannakis, G.B.: Embedding graphs under centrality constraints for network visualization. arXiv preprint arXiv:1401.4408 (2014)
  3. 3.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)CrossRefzbMATHGoogle Scholar
  4. 4.
    Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer Science & Business Media, New York (2005). zbMATHGoogle Scholar
  5. 5.
    Brandes, U., Kenis, P., Wagner, D.: Communicating centrality in policy network drawings. IEEE Trans. Visual Comput. Graphics 9(2), 241–253 (2003)CrossRefGoogle Scholar
  6. 6.
    Brandes, U., Pich, C.: More flexible radial layout. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 107–118. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  7. 7.
    Brandes, U., Wagner, D.: Analysis and visualization of social networks. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 321–340. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  8. 8.
    Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc. 79(387), 531–554 (1984)CrossRefGoogle Scholar
  9. 9.
    Dette, H., Neumeyer, N., Pilz, K.F., et al.: A simple nonparametric estimator of a strictly monotone regression function. Bernoulli 12(3), 469–490 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dette, H., Scheder, R.: Strictly monotone and smooth nonparametric regression for two or more variables. Can. J. Stat. 34(4), 535–561 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: an incremental procedure for separation constraint layout of graphs. IEEE Trans. Visual Comput. Graphics 12(5), 821–828 (2006)CrossRefGoogle Scholar
  12. 12.
    Dwyer, T.: Scalable, versatile and simple constrained graph layout. In: Computer Graphics Forum, vol. 28, pp. 991–998. Wiley Online Library (2009)Google Scholar
  13. 13.
    Dwyer, T., Koren, Y., Marriott, K.: Constrained graph layout by stress majorization and gradient projection. Discrete Mathe. 309(7), 1895–1908 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)CrossRefGoogle Scholar
  15. 15.
    Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  16. 16.
    Hayes, B.: Connecting the dots can the tools of graph theory and social-network studies unravel the next big plot? Am. Sci. 94(5), 400–404 (2006)CrossRefGoogle Scholar
  17. 17.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing, vol. 37 (1994)Google Scholar
  19. 19.
    López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Am. Stat. Assoc. 104(486), 718–734 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    López-Pintado, S., Sun, Y., Lin, J., Genton, M.: Simplicial band depth for multivariate functional data. Adv. Data Anal. Classif. 8, 1–18 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    McGee, V.E.: The multidimensional analysis of elastic distances. Br. J. Math. Stat. Psychol. 19(2), 181–196 (1966)CrossRefGoogle Scholar
  22. 22.
    Mirzargar, M., Whitaker, R., Kirby, R.: Curve boxplot: generalization of boxplot for ensembles of curves. IEEE Trans. Visual Comput. Graphics 20(12), 2654–2663 (2014)CrossRefGoogle Scholar
  23. 23.
    Raj, M., Mirzargar, M., Ricci, R., Kirby, R.M., Whitaker, R.T.: Path boxplots: a method for characterizing uncertainty in path ensembles on a graph. J. Comput. Graph. Stat. 26(2), 243–252 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rodríguez, J.A., Rodríguez, J.A.: The March 11th terrorist network: in its weakness lies its strength (2005)Google Scholar
  25. 25.
    Rousseeuw, P.J., Ruts, I., Tukey, J.W.: The bagplot: a bivariate boxplot. Am. Stat. 53(4), 382–387 (1999)Google Scholar
  26. 26.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schreiber, F., Dwyer, T., Marriott, K., Wybrow, M.: A generic algorithm for layout of biological networks. BMC Bioinf. 10(1), 375 (2009)CrossRefGoogle Scholar
  28. 28.
    Sun, Y., Genton, M.G.: Functional boxplots. J. Comput. Graph. Stat. 20(2), 316–334 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tukey, J.W.: Mathematics and the picturing of data (1975)Google Scholar
  30. 30.
    Van Ham, F., Wattenberg, M.: Centrality based visualization of small world graphs. In: Computer Graphics Forum, vol. 27, pp. 975–982. Wiley Online Library (2008)Google Scholar
  31. 31.
    Van Liere, R., De Leeuw, W.: Graphsplatting: visualizing graphs as continuous fields. IEEE Trans. Visual Comput. Graphics 9(2), 206–212 (2003)CrossRefGoogle Scholar
  32. 32.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)CrossRefGoogle Scholar
  33. 33.
    Zuo, Y., Serfling, R.: General notions of statistical depth function. Ann. Statist. 28, 461–482 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zweig, K.A., et al.: Network analysis literacy. In: MMB & DFT 2014, p. 3 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations