Visualizing Co-phylogenetic Reconciliations

  • Tiziana Calamoneri
  • Valentino Di Donato
  • Diego Mariottini
  • Maurizio PatrignaniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)


We introduce a hybrid metaphor for the visualization of the reconciliations of co-phylogenetic trees, that are mappings among the nodes of two trees. The typical application is the visualization of the co-evolution of hosts and parasites in biology. Our strategy combines a space-filling and a node-link approach. Differently from traditional methods, it guarantees an unambiguous and ‘downward’ representation whenever the reconciliation is time-consistent (i.e., meaningful). We address the problem of the minimization of the number of crossings in the representation, by giving a characterization of planar instances and by establishing the complexity of the problem. Finally, we propose heuristics for computing representations with few crossings.



We thank Riccardo Paparozzi for first experiments on the visualization of co-phylogenetic trees. Moreover, we are grateful to Marie-France Sagot and Blerina Sinaimeri for proposing us the problem and for the interesting discussions.


  1. 1.
    CophyTrees - viewer associated with [8].
  2. 2.
    Bansal, M.S., Chang, W.-C., Eulenstein, O., Fernández-Baca, D.: Generalized binary tanglegrams: algorithms and applications. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 114–125. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  3. 3.
    Böcker, S., Hüffner, F., Truss, A., Wahlström, M.: A faster fixed-parameter approach to drawing binary tanglegrams. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 38–49. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  4. 4.
    Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I., Wolff, A.: Drawing (complete) binary tanglegrams. Algorithmica 62(1–2), 309–332 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Calamoneri, T., Di Donato, V., Mariottini, D., Patrignani, M.: Visualizing co-phylogenetic reconciliations. Technical report arXiv:1708.09691, Cornell University (2017)
  6. 6.
    Chevenet, F., Doyon, J.P., Scornavacca, C., Jacox, E., Jousselin, E., Berry, V.: SylvX: a viewer for phylogenetic tree reconciliations. Bioinformatics 32(4), 608–610 (2016)CrossRefGoogle Scholar
  7. 7.
    Di Battista, G., Didimo, W.: Gdtoolkit. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 571–597. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  8. 8.
    Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., Sagot, M.F.: EUCALYPT: efficient tree reconciliation enumerator. Algorithms Mol. Biol. 10(1), 3 (2015)CrossRefGoogle Scholar
  9. 9.
    Dwyer, T., Schreiber, F.: Optimal leaf ordering for two and a half dimensional phylogenetic tree visualisation. In: Proceedings of the 2004 Australasian Symposium on Information Visualisation - Volume 35, APVis 2004, pp. 109–115. Australian Computer Society Inc., Darlinghurst (2004)Google Scholar
  10. 10.
    Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. J. Comput. Syst. Sci. 76(7), 593–608 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kruskal, J.B., Landwehr, J.M.: Icicle plots: better displays for hierarchical clustering. Am. Stat. 37(2), 162–168 (1983)Google Scholar
  12. 12.
    Nöllenburg, M., Völker, M., Wolff, A., Holten, D.: Drawing binary tanglegrams: an experimental evaluation. In: Finocchi, I., Hershberger, J. (eds.) ALENEX 2009. pp. 106–119. SIAM (2009)Google Scholar
  13. 13.
    Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The co phylogeny reconstruction problem is NP-complete. J. Comput. Biol. 18(1), 59–65 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rusu, A.: Tree drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 155–192. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  15. 15.
    Schulz, H.J.: a tree visualization reference. IEEE Comput. Graphics Appl. 31(6), 11–15 (2011)CrossRefGoogle Scholar
  16. 16.
    Scornavacca, C., Zickmann, F., Huson, D.H.: Tanglegrams for rooted phylogenetic trees and networks. Bioinformatics 13(27), i248–i256 (2011)CrossRefGoogle Scholar
  17. 17.
    Sennblad, B., Schreil, E., Sonnhammer, A.C.B., Lagergren, J., Arvestad, L.: primetv: a viewer for reconciled trees. BMC Bioinform. 8(1), 148 (2007)CrossRefGoogle Scholar
  18. 18.
    Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), i409–i415 (2012)CrossRefGoogle Scholar
  19. 19.
    Tofigh, A., Hallett, M.T., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–535 (2011)CrossRefGoogle Scholar
  20. 20.
    Tollis, I.G., Kakoulis, K.G.: Algorithms for visualizing phylogenetic networks. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 183–195. Springer, Cham (2016). CrossRefGoogle Scholar
  21. 21.
    Wieseke, N., Hartmann, T., Bernt, M., Middendorf, M.: Cophylogenetic reconciliation with ILP. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(6), 1227–1235 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tiziana Calamoneri
    • 1
  • Valentino Di Donato
    • 2
  • Diego Mariottini
    • 2
  • Maurizio Patrignani
    • 2
    Email author
  1. 1.Computer Science DepartmentUniversity of Rome “Sapienza”RomeItaly
  2. 2.Engineering DepartmentRoma Tre UniversityRomeItaly

Personalised recommendations