Advertisement

Simple Compact Monotone Tree Drawings

  • Anargyros Oikonomou
  • Antonios Symvonis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)

Abstract

A monotone drawing of a graph G is a straight-line drawing of G such that every pair of vertices is connected by a path that is monotone with respect to some direction.

Trees, as a special class of graphs, have been the focus of several papers and, recently, He and He [6] showed how to produce a monotone drawing of an arbitrary n-vertex tree that is contained in a \(12n \times 12n\) grid.

In this paper, we present a simple algorithm that constructs for each arbitrary tree a monotone drawing on a grid of size at most \(n \times n\).

References

  1. 1.
    Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Angelini, P., Didimo, W., Kobourov, S., Mchedlidze, T., Roselli, V., Symvonis, A., Wismath, S.: Monotone drawings of graphs with fixed embedding. Algorithmica 71(2), 233–257 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brocot, A.: Calcul des rouages par approximation, nouvelle methode. Revue Chronometrique 6, 186–194 (1860)Google Scholar
  4. 4.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1994)zbMATHGoogle Scholar
  5. 5.
    He, D., He, X.: Nearly optimal monotone drawing of trees. Theor. Comput. Sci. 654, 26–32 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    He, D., He, X.: Optimal monotone drawings of trees. CoRR abs/1604.03921 (2016)Google Scholar
  7. 7.
    He, X., He, D.: Compact monotone drawing of trees. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 457–468. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21398-9_36 CrossRefGoogle Scholar
  8. 8.
    Hossain, M.I., Rahman, M.S.: Good spanning trees in graph drawing. Theor. Comput. Sci. 607, 149–165 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kindermann, P., Schulz, A., Spoerhase, J., Wolff, A.: On monotone drawings of trees. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 488–500. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_41 Google Scholar
  10. 10.
    Oikonomou, A., Symvonis, A.: Simple compact monotone tree drawings. CoRR abs/1708.09653v2 (2017). http://arxiv.org/abs/1708.09653v2
  11. 11.
    Stern, M.: Ueber eine zahlentheoretische funktion. Journal fur die reine und angewandte Mathematik 55, 193–220 (1858)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.School of Applied Mathematical and Physical SciencesNational Technical University of AthensAthensGreece

Personalised recommendations