On Upward Drawings of Trees on a Given Grid

  • Therese Biedl
  • Debajyoti Mondal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)


Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded.

In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree T and a \(W\times H\) grid, it is NP-hard to decide whether T admits a strictly-upward (unordered) drawing in the given grid. The hardness result holds both in polyline and straight-line drawing settings.


  1. 1.
    Alam, M.J., Samee, M.A.H., Rabbi, M., Rahman, M.S.: Minimum-layer upward drawings of trees. J. Graph Algorithms Appl. 14(2), 245–267 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bachmaier, C., Matzeder, M.: Drawing unordered trees on \(k\)-grids. J. Graph Algorithms Appl. 17(2), 103–128 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI layouts. Inf. Process. Lett. 25(4), 263–267 (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Biedl, T.: On area-optimal planar graph drawings. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS, vol. 8572, pp. 198–210. Springer, Heidelberg (2014). Google Scholar
  5. 5.
    Biedl, T.: Optimum-width upward drawings of trees I: rooted pathwidth. CoRR abs/1502.02753 (2015)Google Scholar
  6. 6.
    Biedl, T., Mondal, D.: On upward drawings of trees on a given grid. CoRR abs/1708.09515 (2017).
  7. 7.
    Brunner, W., Matzeder, M.: Drawing ordered (\(k - 1\))-ary trees on k-grids. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 105–116. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  8. 8.
    Di Battista, G., Frati, F.: A survey on small-area planar graph drawing (2014), coRR report 1410.1006Google Scholar
  9. 9.
    Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W H Freeman & Co, New York (1979)zbMATHGoogle Scholar
  10. 10.
    Gregori, A.: Unit-length embedding of binary trees on a square grid. Inf. Process. Lett. 31(4), 167–173 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Krug, M., Wagner, D.: Minimizing the area for planar straight-line grid drawings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 207–212. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  12. 12.
    Mahaney, S.R.: Sparse complete sets of NP: Solution of a conjecture of Berman and Hartmanis. J. Comput. Syst. Sci. 25(2), 130–143 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Marriott, K., Stuckey, P.J.: NP-completeness of minimal width unordered tree layout. J. Graph Algorithms Appl. 8(2), 295–312 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mondal, D., Alam, M.J., Rahman, M.S.: Minimum-layer drawings of trees. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 221–232. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  15. 15.
    Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of plane 3-trees. J. Graph Algorithms Appl. 15(2), 177–204 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Supowit, K.J., Reingold, E.M.: The complexity of drawing trees nicely. Acta Informatica 18, 377–392 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization (Discrete Mathematics and Its Applications). Chapman and Hall/CRC, Boca Raton (2014)zbMATHGoogle Scholar
  18. 18.
    Trevisan, L.: A note on minimum-area upward drawing of complete and Fibonacci trees. Inf. Process. Lett. 57(5), 231–236 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations