Advertisement

Upward Partitioned Book Embeddings

  • Hugo A. Akitaya
  • Erik D. Demaine
  • Adam Hesterberg
  • Quanquan C. Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)

Abstract

We analyze a directed variation of the book embedding problem when the page partition is prespecified and the nodes on the spine must be in topological order (upward book embedding). Given a directed acyclic graph and a partition of its edges into k pages, can we linearly order the vertices such that the drawing is upward (a topological sort) and each page avoids crossings? We prove that the problem is NP-complete for \(k\ge 3\), and for \(k\ge 4\) even in the special case when each page is a matching. By contrast, the problem can be solved in linear time for \(k=2\) pages when pages are restricted to matchings. The problem comes from Jack Edmonds (1997), motivated as a generalization of the map folding problem from computational origami.

Notes

Acknowledgements

We thank Jack Edmonds for valuable discussions in August 1997 where he described how Upward Matching-Partitioned k -Page Book Embedding generalizes the map folding problem. We also thank Therese Biedl for valuable discussions in 2007 about the complexity this problem.

This research was conducted during the 31st Bellairs Winter Workshop on Computational Geometry which took place in Holetown, Barbados on March 18–25, 2016. We thank the other participants of the workshop for helpful discussion and for providing a fun and stimulating environment. We also thank our anonymous referees for helpful suggestions in improving the clarity of our paper.

Supported in part by the NSF award CCF-1422311 and Science without Borders. Quanquan Liu is supported in part by NSF GRFP under Grant No. (1122374).

References

  1. [ABD+04]
    Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell, J.S.B., Sethia, S., Skiena, S.S.: When can you fold a map? Comput. Geom. Theor. Appl. 29(1), 23–46 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [ABD12]
    Angelini, P., Di Bartolomeo, M., Di Battista, G.: Implementing a partitioned 2-page book embedding testing algorithm. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 79–89. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36763-2_8 CrossRefGoogle Scholar
  3. [ADHL17]
    Akitaya, H.A., Demaine, E.D., Hesterberg, A., Liu, Q.C.: Upward partitioned book embeddings. CoRR, abs/1708.06730 (2017)Google Scholar
  4. [ALN15]
    Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned book embedding problems. Theoret. Comput. Sci. 575, 71–89 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BBKR15]
    Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.: 1-planar graphs have constant book thickness. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 130–141. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48350-3_12 CrossRefGoogle Scholar
  6. [BGR16]
    Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings of 4-planar graphs. Algorithmica 75(1), 158–185 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BH96]
    Bern, M., Hayes, B.: The complexity of flat origami. In: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1996, pp. 175–183. Society for Industrial and Applied Mathematics, Philadelphia (1996)Google Scholar
  8. [BK79]
    Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theor. Ser. B 27(3), 320–331 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [CLR87]
    Chung, F.R., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebraic Discrete Methods 8(1), 33–58 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [DGDLW06]
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Book embeddability of series-parallel digraphs. Algorithmica 45(4), 531–547 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [DLM12]
    Demaine, E.D., Liu, E., Morgan, T.: A polynomial-time algorithm for \(2 \times n\) map folding. Manuscript, 2012. See Tom Morgan’s M.Eng. thesis, “Map folding”, MIT (2012)Google Scholar
  12. [DW04]
    Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math’. Theor. Comput. Sci. 6(2), 339–358 (2004)MathSciNetzbMATHGoogle Scholar
  13. [DW05]
    Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7(1), 155–202 (2005)MathSciNetzbMATHGoogle Scholar
  14. [ENO97]
    Enomoto, H., Nakamigawa, T., Ota, K.: On the pagenumber of complete bipartite graphs. J. Comb. Theor. Ser. B 71(1), 111–120 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [FFR11]
    Frati, F., Fulek, R., Ruiz-Vargas, A.J.: On the page number of upward planar directed acyclic graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 391–402. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25878-7_37 CrossRefGoogle Scholar
  16. [HLR92]
    Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as machines for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [HN14]
    Hong, S.-H., Nagamochi, H.: Simpler algorithms for testing two-page book embedding of partitioned graphs. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 477–488. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08783-2_41 Google Scholar
  18. [Hos12]
    Hoske, D.: Book embedding with fixed page assignments. Bachelor Thesis (2012)Google Scholar
  19. [HP97]
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of posets. SIAM J. Discrete Math. 10(4), 599–625 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [HP99]
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM J. Comput. 28(5), 1588–1626 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [HPT99]
    Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [HR92]
    Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [MK16]
    McAdams, S., Kanno, J.: Oriented book embeddings. arXiv:1602.02147 (2016)
  24. [Opa79]
    Opatrný, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Wie86]
    Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-17218-1_57 CrossRefGoogle Scholar
  26. [Wig82]
    Wigderson, A.: The complexity of the hamiltonian circuit problem for maximal planar graphs. Technical report 298, EECS Department, Princeton University, Princeton, New Jersey (1982)Google Scholar
  27. [Yan89]
    Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Tufts UniversityMedfordUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations