Advertisement

On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

  • Michael A. Bekos
  • Henry Förster
  • Michael Kaufmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10692)

Abstract

We study two variants of the well-known orthogonal drawing model: (i) the smooth orthogonal, and (ii) the octilinear. Both models form an extension of the orthogonal, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively).

For planar graphs of max-degree 4, we analyze relationships between the graph classes that can be drawn bendless in the two models and we also prove NP-hardness for a restricted version of the bendless drawing problem for both models. For planar graphs of higher degree, we present an algorithm that produces bi-monotone smooth orthogonal drawings with at most two segments per edge, which also guarantees a linear number of edges with exactly one segment.

Notes

Acknowledgements

The authors would like to thank Patrizio Angelini and Martin Gronemann for useful discussions.

References

  1. 1.
    Alam, M.J., Bekos, M.A., Kaufmann, M., Kindermann, P., Kobourov, S.G., Wolff, A.: Smooth orthogonal drawings of planar graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 144–155. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54423-1_13 CrossRefGoogle Scholar
  2. 2.
    Bekos, M.A., Förster, H., Kaufmann, M.: On smooth orthogonal and octilinear drawings: Relations, complexity and kandinsky drawings. CoRR 1708.09197 (2017)Google Scholar
  3. 3.
    Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings with one bend per edge. J. Graph Algorithms Appl. 19(2), 657–680 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bekos, M.A., Gronemann, M., Pupyrev, S., Raftopoulou, C.N.: Perfect smooth orthogonal drawings. In: Bourbakis, N.G., Tsihrintzis, G.A., Virvou, M. (eds.) IISA, pp. 76–81. IEEE (2014)Google Scholar
  5. 5.
    Bekos, M.A., Kaufmann, M., Kobourov, S.G., Symvonis, A.: Smooth orthogonal layouts. J. Graph Algorithms Appl. 17(5), 575–595 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bekos, M.A., Kaufmann, M., Krug, R.: On the total number of bends for planar octilinear drawings. J. Graph Algorithms Appl. 21(4), 709–730 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Trans. Comput. 49(8), 826–840 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on a grid. Inf. Process. Lett. 54(4), 241–246 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and quasi-upward drawings with vertices of prescribed size. In: Kratochvíyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-46648-7_31 CrossRefGoogle Scholar
  11. 11.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  12. 12.
    Didimo, W., Liotta, G., Patrignani, M.: On the complexity of HV-rectilinear planarity testing. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 343–354. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_29 Google Scholar
  13. 13.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi drawings of graphs. J. Graph Algorithms Appl. 16(1), 85–108 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Durocher, S., Felsner, S., Mehrabi, S., Mondal, D.: Drawing HV-restricted planar graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 156–167. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54423-1_14 CrossRefGoogle Scholar
  15. 15.
    Eppstein, D.: Planar lombardi drawings for subcubic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 126–137. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36763-2_12 CrossRefGoogle Scholar
  16. 16.
    Felsner, S.: Geometric Graphs and Arrangements. Advanced Lectures in Mathematics. Vieweg, Wiesbaden (2004).  https://doi.org/10.1007/978-3-322-80303-0 CrossRefzbMATHGoogle Scholar
  17. 17.
    Fößmeier, U., Heß, C., Kaufmann, M.: On improving orthogonal drawings: The 4M-algorithm. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 125–137. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-37623-2_10 CrossRefGoogle Scholar
  18. 18.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0021809 CrossRefGoogle Scholar
  19. 19.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte and monotone drawings. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 283–294. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25870-1_26 CrossRefGoogle Scholar
  21. 21.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  22. 22.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Di Giacomo, E., Liotta, G., Montecchiani, F.: The planar slope number of subcubic graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54423-1_12 CrossRefGoogle Scholar
  24. 24.
    Harary, F.: Graph Theory. Addison-Wesley, MA (1991)zbMATHGoogle Scholar
  25. 25.
    Hong, S., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro maps. J. Vis. Lang. Comput. 17(3), 203–224 (2006)CrossRefGoogle Scholar
  26. 26.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44969-8 zbMATHGoogle Scholar
  28. 28.
    Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91 (1998)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of finding non-planar rectilinear drawings of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 305–316. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18469-7_28 CrossRefGoogle Scholar
  31. 31.
    Nöllenburg, M.: Automated Drawing of Metro Maps. Master’s thesis, Fakultät für Informatik, Universität Karlsruhe (TH), August 2005Google Scholar
  32. 32.
    Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626–641 (2011)CrossRefGoogle Scholar
  33. 33.
    Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA, pp. 138–148. SIAM (1990)Google Scholar
  34. 34.
    Stott, J.M., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro map layout using multicriteria optimization. IEEE Trans. Vis. Comput. Graph. 17(1), 101–114 (2011)CrossRefGoogle Scholar
  35. 35.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Henry Förster
    • 1
  • Michael Kaufmann
    • 1
  1. 1.Wilhelm-Schickhard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations