Computational Diffusion MRI pp 37-49 | Cite as
Spatio-Temporal dMRI Acquisition Design: Reducing the Number of qτ Samples Through a Relaxed Probabilistic Model
Abstract
Acquisition time is a major limitation in recovering brain white matter microstructure with diffusion Magnetic Resonance Imaging. Finding a sampling scheme that maximizes signal quality and satisfies given time constraints is NP-hard. We alleviate that by introducing a relaxed probabilistic model of the problem, for which sub-optimal solutions can be found effectively. Our model is defined in the qτ space, so that it captures both spacial and temporal phenomena. The experiments on synthetic data and in-vivo diffusion images of the C57Bl6 wild-type mice reveal superiority of our technique over random sampling and even distribution in the qτ space.
Notes
Acknowledgements
This work has received funding from the ANR/NSF award NeuroRef; the European Research Council (ERC) under the Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665 : CoBCoM); the MAXIMS grant funded by ICM’s The Big Brain Theory Program and ANR-10-IAIHU-06.
References
- 1.Callaghan, P.T.: Pulsed-gradient spin-echo nmr for planar, cylindrical, and spherical pores under conditions of wall relaxation. J. Magn. Reson. Ser. A 113(1), 53–59 (1995)CrossRefGoogle Scholar
- 2.Tuch, D.S.: Q-ball imaging. MR Med. 52(6), 1358–1372 (2004)Google Scholar
- 3.Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)CrossRefGoogle Scholar
- 4.Wu, Y.C., Field, A.S., Alexander, A.L.: Computation of diffusion function measures in q-space using magnetic resonance hybrid diffusion imaging. IEEE Trans. Med. Imag. 27(6) (2008) 858–865CrossRefGoogle Scholar
- 5.Khachaturian, M.H., Wisco, J.J., Tuch, D.S.: Boosting the sampling efficiency of q-ball imaging using multiple wavevector fusion. MR Med. 57(2), 289–296 (2007)Google Scholar
- 6.Koay, C.G., Özarslan, E., Johnson, K.M., Meyerand, M.E.: Sparse and optimal acquisition design for diffusion MRI and beyond. Med. Ph. 39(5), 2499–2511 (2012)CrossRefGoogle Scholar
- 7.Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60(2), 439–448 (2008)CrossRefGoogle Scholar
- 8.Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 9.Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. MR Med. 58(6), 1182–1195 (2007)Google Scholar
- 10.Merlet, S., Deriche, R.: Compressed sensing for accelerated EAP recovery in diffusion MRI. In: MICCAI, pp. 1–14 (2010)Google Scholar
- 11.Saint-Amant, E., Descoteaux, M.: Sparsity characterisation of the diffusion propagator. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2011, vol. 19 (1915)Google Scholar
- 12.Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. MR Med. 58(3), 497–510 (2007)Google Scholar
- 13.Assemlal, H.E., Tschumperlé, D., Brun, L.: Efficient and robust computation of PDF features from diffusion MR signal. Med. Image Anal. 13(5), 715–729 (2009)CrossRefGoogle Scholar
- 14.Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)CrossRefGoogle Scholar
- 15.Fick, R., Petiet, A., Santin, M., Philippe, A.C., Lehericy, S., Deriche, R., Wassermann, D.: Multi-spherical diffusion MRI: exploring diffusion time using signal sparsity. In: MICCAI 2016 Workshop on Computational dMRI (CDMRI’16) (2016)Google Scholar
- 16.Fick, R., Wassermann, D., Pizzolato, M., Deriche, R.: A unifying framework for spatial and temporal diffusion in diffusion MRI. In: International Conference on Information Processing in Medical Imaging, pp. 167–178. Springer, New York (2015)Google Scholar
- 17.Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS, Boston (1996)MATHGoogle Scholar
- 18.Gilks, W.R., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. CRC Press, Boca Raton (1995)MATHGoogle Scholar
- 19.Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E.: Interpretable whole-brain prediction analysis with GraphNet. NeuroImage 72, 304–321 (2013)CrossRefGoogle Scholar
- 20.Stejskal, E.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43(10), 3597–3603 (1965)CrossRefGoogle Scholar
- 21.Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69(6), 1534–1540 (2013)CrossRefGoogle Scholar
- 22.Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. NeuroImage 134, 365–385 (2016)CrossRefGoogle Scholar
- 23.Kaden, E., Knösche, T., Anwander, A.: Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging. Neuroimage 37, 474–488 (2007)CrossRefGoogle Scholar