Estimating Tissue Microstructure Using Diffusion-Weighted Magnetic Resonance Spectroscopy of Brain Metabolites

  • Marco Palombo
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) allows to uniquely characterize the brain tissue in vivo by quantifying the diffusion of brain metabolites. In contrast with water, many brain metabolites are predominantly intracellular, and some metabolites are preferentially found in specific brain cell types, e.g., neurons and glia. Given the microstructural sensitivity of diffusion-encoding filters, investigation of metabolite diffusion properties using DW-MRS can provide exclusive cell and compartment-specific information. Since many developmental processes, such as plasticity and aging, or pathological processes such as neurological diseases are characterized by modulations of specific cellular types and their microstructures, and since water signal is not representative of any specific compartment, metabolite signals can serve as biomarkers with enhanced specificity. Furthermore, since many models and assumptions are used for quantification of water diffusion, metabolite diffusion may serve to generate a-priori information for model selection.

In this chapter, we survey the state-of-the-art methods that have been developed for the advanced analysis of DW-MRS data and discuss the potential relevance of DW-MRS for elucidating brain microstructure in vivo. Some examples are reported and discussed, showing that when accurate data on the diffusion of multiple metabolites is combined with accurate computational and geometrical modelling, DW-MRS can provide unique and accurate cell-specific information on the intracellular structure of brain tissue.


  1. 1.
    Vangelderen, P., Devleeschouwer, M.H.M., Despres, D., Pekar, J., Vanzijl, P.C.M., Moonen, C.T.W.: Water diffusion and acute stroke. Magn. Reson. Med. 31(2), 154–163 (1994)CrossRefGoogle Scholar
  2. 2.
    Moseley, M.E., Kucharczyk, J., Mintorovitch, J., Cohen, Y., Kurhanewicz, J., Derugin, N., Asgari, H., Norman, D.: Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am. J. Neuroradiol. 11(3), 423–429 (1990)Google Scholar
  3. 3.
    Schlaug, G., Siewert, B., Benfield, A., Edelman, R.R., Warach, S.: Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49(1), 113–119 (1997)CrossRefGoogle Scholar
  4. 4.
    Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies - a technical review. NMR Biomed. 15(7–8), 468–480 (2002)CrossRefGoogle Scholar
  5. 5.
    Lori, N.F., Akbudak, E., Shimony, J.S., Cull, T.S., Snyder, A.Z., Guillory, R.K., Conturo, T.E.: Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed. 15(7–8), 494–515 (2002)CrossRefGoogle Scholar
  6. 6.
    Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imag. 13(4), 534–546 (2001)CrossRefGoogle Scholar
  7. 7.
    Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J., Dyrby, T.B.: Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52(4), 1374–1389 (2010)CrossRefGoogle Scholar
  8. 8.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar
  9. 9.
    Lampinen, B., Szczepankiewicz, F., Martensson, J., van Westen, D., Sundgren, P.C., Nilsson, M.: Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: a model comparison using spherical tensor encoding. Neuroimage 147, 517–531 (2017)CrossRefGoogle Scholar
  10. 10.
    Kiselev, V.G.: Fundamentals of diffusion MRI physics. NMR Biomed. 30(3), e3602 (2017)CrossRefGoogle Scholar
  11. 11.
    Gill, S.S., Small, R.K., Thomas, D.G., Patel, P., Porteous, R., Van Bruggen, N., Gadian, D.G., Kauppinen, R.A., Williams, S.R.: Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed. 2(5–6), 196–200 (1989)CrossRefGoogle Scholar
  12. 12.
    Simmons, M.L., Frondoza, C.G., Coyle, J.T.: Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45(1), 37–45 (1991)CrossRefGoogle Scholar
  13. 13.
    Petroff, O.A., Pleban, L., Prichard, J.W.: Metabolic assessment of a neuron-enriched fraction of rat cerebrum using high-resolution 1H and 13C NMR spectroscopy. Magn. Reson. Med. 30(5), 559–567 (1993)CrossRefGoogle Scholar
  14. 14.
    Nordengen, K., Heuser, C., Rinholm, J.E., Matalon, R., Gundersen, V.: Localisation of N-acetylaspartate in oligodendrocytes/myelin. Brain Struct. Funct. 220(2), 899–917 (2015)CrossRefGoogle Scholar
  15. 15.
    Ronen, I., Valette, J.: Diffusion-weighted magnetic resonance spectroscopy. eMagRes 4, 733–750 (2015)CrossRefGoogle Scholar
  16. 16.
    Nicolay, K., Braun, K.P., Graaf, R.A., Dijkhuizen, R.M., Kruiskamp, M.J.: Diffusion NMR spectroscopy. NMR Biomed. 14(2), 94–111 (2001)CrossRefGoogle Scholar
  17. 17.
    Cao, P., Wu, E.X.: In vivo diffusion MRS investigation of non-water molecules in biological tissues. NMR Biomed. 30(3), e3481 (2017)CrossRefGoogle Scholar
  18. 18.
    Palombo, M., Ligneul, C., Valette, J.: Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion-weighting: Diffusion in long fibers (almost) accounts for non-monoexponential attenuation. Magn. Reson. Med. 77(1), 343–350 (2017)CrossRefGoogle Scholar
  19. 19.
    De Graaf, R.A.: In Vivo NMR Spectroscopy: Principles and Techniques, 2nd edn. Wiley, Chichester (2007)CrossRefGoogle Scholar
  20. 20.
    Palombo, M., Shemesh, N., Ronen, I., Valette, J.: Insights into brain microstructure from in vivo DW-MRS. NeuroImage (2017, in press).
  21. 21.
    Hahn, E.L.: Spin echoes. Phys. Rev. 77(5), 746–746 (1950)zbMATHGoogle Scholar
  22. 22.
    Frahm, J., Merboldt, K.D., Hanicke, W.: Localized proton spectroscopy using stimulated echoes. J. Magn. Reson. 72, 502–508 (1987)Google Scholar
  23. 23.
    Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288 (1965)CrossRefGoogle Scholar
  24. 24.
    Cotts, R.M., Hoch, M., Sun, T., Marker, J.: Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J. Magn. Reson. 83, 252–266 (1989)Google Scholar
  25. 25.
    Assaf, Y., Cohen, Y.: Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue. J. Magn. Reson. 131(1), 69–85 (1998)CrossRefGoogle Scholar
  26. 26.
    Assaf, Y., Cohen, Y.: In vivo and in vitro bi-exponential diffusion of N-acetyl aspartate (NAA) in rat brain: a potential structural probe? NMR Biomed. 11(2), 67–74 (1998)CrossRefGoogle Scholar
  27. 27.
    Assaf, Y., Cohen, Y.: Structural information in neuronal tissue as revealed by q-space diffusion NMR spectroscopy of metabolites in bovine optic nerve. NMR Biomed. 12(6), 335–44 (1999)CrossRefGoogle Scholar
  28. 28.
    Ligneul, C., Palombo, M., Valette, J.: Metabolite diffusion up to very high b in the mouse brain in vivo: revisiting the potential correlation between relaxation and diffusion properties. Magn. Reson. Med. 77(4), 1390–1398 (2017)CrossRefGoogle Scholar
  29. 29.
    Kroenke, C.D., Ackerman, J.J., Yablonskiy, D.A.: On the nature of the NAA diffusion attenuated MR signal in the central nervous system. Magn. Reson. Med. 52(5), 1052–1059 (2004)CrossRefGoogle Scholar
  30. 30.
    Yablonskiy, D.A., Sukstanskii, A.L.: Theoretical models of the diffusion weighted MR signal. NMR Biomed. 23(7), 661–681 (2010)CrossRefGoogle Scholar
  31. 31.
    Ellegood, J., McKay, R.T., Hanstock, C.C., Beaulieu, C.: Anisotropic diffusion of metabolites in peripheral nerve using diffusion weighted magnetic resonance spectroscopy at ultra-high field. J. Magn. Reson. 184(1), 20–28 (2007)CrossRefGoogle Scholar
  32. 32.
    Soderman, O., Jonsson, B.: Restricted diffusion in cylindrical geometry. J. Magn. Reson. Ser. A 117(1), 94–97 (1995)CrossRefGoogle Scholar
  33. 33.
    Balinov, B., Jonsson, B., Linse, P., Soderman, O.: The NMR self-diffusion method applied to restricted diffusion. simulation of echo attenuation from molecules in spheres and between planes. J. Magn. Reson. Ser. A 104, 17–25 (1993)Google Scholar
  34. 34.
    Callaghan, P.T.: Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation. J. Magn. Reson. Ser. A 113(1), 53–59 (1995)CrossRefGoogle Scholar
  35. 35.
    Ronen, I., Budde, M., Ercan, E., Annese, J., Techawiboonwong, A., Webb, A.: Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct. Funct. 219(5), 1773–1785 (2014)CrossRefGoogle Scholar
  36. 36.
    Palombo, M., Ligneul, C., Hernandez-Garzon, E., Valette, J.: Can we detect the effect of spines and leaflets on the diffusion of brain intracellular metabolites? NeuroImage (2017, in press).
  37. 37.
    Shemesh, N., Jespersen, S.N., Alexander, D.C., Cohen, Y., Drobnjak, I., Dyrby, T.B., Finsterbusch, J., Koch, M.A., Kuder, T., Laun, F., Lawrenz, M., Lundell, H., Mitra, P.P., Nilsson, M., Ozarslan, E., Topgaard, D., Westin, C.F.: Conventions and nomenclature for double diffusion encoding NMR and MRI. Magn. Reson. Med. 75(1), 82–87 (2016)CrossRefGoogle Scholar
  38. 38.
    Shemesh, N., Rosenberg, J.T., Dumez, J.N., Grant, S.C., Frydman, L.: Distinguishing neuronal from astrocytic subcellular microstructures using in vivo double diffusion encoded 1H MRS at 21.1 T. PLoS One 12(10), e0185232 (2017)Google Scholar
  39. 39.
    Price, W.: NMR Studies of Translational Motion: Principles and Applications. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  40. 40.
    Nilsson, M., Lasic, S., Drobnjak, I., Topgaard, D., Westin, C.F.: Resolution limit of cylinder diameter estimation by diffusion MRI: the impact of gradient waveform and orientation dispersion. NMR Biomed 30(7), e3711 (2017)CrossRefGoogle Scholar
  41. 41.
    Leergaard, T.B., White, N.S., De Crespigny, A., Bolstad, I., D’Arceuil, H., Bjaalie, J.G., Dale, A.M.: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PLoS One 5(1), e8595 (2010)CrossRefGoogle Scholar
  42. 42.
    Budde, M.D., Frank, J.A.: Examining brain microstructure using structure tensor analysis of histological sections. Neuroimage 63(1), 1–10 (2012)CrossRefGoogle Scholar
  43. 43.
    Ligneul, C., Valette, J.: Probing metabolite diffusion at ultra-short time scales in the mouse brain using optimized oscillating gradients and “short”-echo-time diffusion-weighted MRS. NMR Biomed. 30(1), e3671 (2017)CrossRefGoogle Scholar
  44. 44.
    Palombo, M., Ligneul, C., Najac, C., Le Douce, J., Flament, J., Escartin, C., Hantraye, P., Brouillet, E., Bonvento, G., Valette, J.: New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo. Proc. Natl. Acad. Sci. U. S. A. 113(24), 6671–6676 (2016)CrossRefGoogle Scholar
  45. 45.
    Najac, C., Branzoli, F., Ronen, I., Valette, J.: Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T. Brain Struct. Funct. 221(3), 1245–1254 (2016)CrossRefGoogle Scholar
  46. 46.
    Chvatal, A., Anderova, M., Kirchhoff, F.: Three-dimensional confocal morphometry - a new approach for studying dynamic changes in cell morphology in brain slices. J. Anat. 210(6), 671–683 (2007)CrossRefGoogle Scholar
  47. 47.
    Jespersen, S.N., Kroenke, C.D., Ostergaard, L., Ackerman, J.J., Yablonskiy, D.A.: Modeling dendrite density from magnetic resonance diffusion measurements. Neuroimage 34(4), 1473–1486 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marco Palombo
    • 1
  1. 1.Centre for Medical Imaging Computing and Department of Computer ScienceUniversity College of LondonLondonUK

Personalised recommendations