Advertisement

Decompression Illness (DCI)

  • Olaf Rusoke-Dierich
Chapter

Abstract

Synonyms of decompression illness (DCI) are dysbaric illness (DI), decompression sickness (DCS), decompression accident or caisson disease. As DCS and AGE quite often occur together, these are commonly summarised as DCI or DI which is used as the preferred term for decompression-related accidents. DCS alone is rather subject to inert gas bubbles related to decompression effects as aetiology by itself. Neurological symptoms of DCS might be quite similar to AGE caused by pulmonary barotrauma. However, spinal symptoms are only found in DCS. DCI is a spectrum, which may have no symptoms at all, minor unspecific symptoms like fatigue up to fatal complications.

References

  1. 1.
    Benestad HB, Hersleth IB, Hardersen H, Molvaer OI. Functional capacity of neutrophil granulocytes in deep-sea divers. Scand J Clin Lab Invest. 1990;50:9–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Bennett PB, Marroni A, Cronje FJ, Cali-Corleo R, Germonpre P, Pieri M, et al. Effect of varying deep stop times and shallow stop times on precordial bubbles after dives to 25 msw (82 fsw). Undersea Hyperb Med. 2007;34(6):399–406.PubMedGoogle Scholar
  3. 3.
    Bergh K, Hjelde A, Iversen OJ, Brubakk AO. Variability over time of complement activation induced by air bubbles in human and rabbit sera. J Appl Physiol. 1993;74:1811–5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boussuges A, Succo E, Juhan-Vague I, Sainty JM. Activation of coagulation in decompression illness. Aviat Space Environ Med. 1998;69(2):129–32.PubMedGoogle Scholar
  5. 5.
    Brubakk AO. Endothelium and bubble injury. The role of endothelium in decompression illness; 30th annual scientific meeting of the European Underwater Baromedical Society, Ajaccio, Corsica, France EUBS; 2004Google Scholar
  6. 6.
    Bühlmann AA. Decompression/decompression sickness. Berlin: Springer; 1984.CrossRefGoogle Scholar
  7. 7.
    Bühlmann AA, Völlm EB, Nussberger P. Tauchmedizin, barotrauma, Gasembolie, Dekompensation, Dekompensationskrankheit. 5th ed. Berlin: Springer; 2002.Google Scholar
  8. 8.
    Butler BD, Hills BA. The lung as a filter for microbubbles. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(3):537–43.PubMedGoogle Scholar
  9. 9.
    Dujic Z, Duplancic D, Marinovic-Terzic I, Bakovic D, Ivancev V, Valic Z, et al. Aerobic exercise before diving reduces venous gas bubble formation in humans. J Physiol. 2004;555(Pt 3):637–42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dujic Z, Obad A, Palada I, Ivancev V, Valic Z. Venous bubble count declines during strenuous exercise after an open sea dive to 30 m. Aviat Space Environ Med. 2006;77(6):592–6.PubMedGoogle Scholar
  11. 11.
    Dujic Z, Palada I, Obad A, Duplancic D, Bakovic D, Valic Z. Exercise during a 3-min decompression stop reduces postdive venous gas bubbles. Med Sci Sports Exerc. 2005;37(8):1319–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Dujic Z, Valic Z, Brubakk AO. Beneficial role of exercise on scuba diving. Exerc Sport Sci Rev. 2008;36(1):38–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Eftedal OS, Lydersen S, Brubakk AO. The relationship between venous gas bubbles and adverse effects of decompression after air dives. Undersea Hyperb Med Soc UHM. 2007;35(2)Google Scholar
  14. 14.
    Erdem I, Yildiz S, Uzun G, Sonmez G, Senol MG, Mutluoglu M, Mutlu H, Oner B. Cerebral white-matter lesions in asymptomatic military divers. Aviat Space Environ Med. 2009;80:2–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Erdmann. Klinische Kardiologie – Krankeiten des Herzens, des Kreislaufs und der herznahen Gefäße. 6th ed: Springer; 2006.Google Scholar
  16. 16.
    Francis TJR. The pathophysiology of decompression sickness. In: Bennett PB, Moon RE, editors. Diving accident management. North Palm Beach: UHMS; 1990. p. 38–56.Google Scholar
  17. 17.
    Francis TJ, Dutka AJ, Flynn ET. Experimental determination of latency, severity, and outcome in CNS decompression sickness. Undersea Biomed Res. 1988;15(6):419–27. 83PubMedGoogle Scholar
  18. 18.
    Francis TJ, Pezeshkpour GH, Dutka AJ, Hallenbeck JM, Flynn ET. Is there a role for the autochthonous bubble in the pathogenesis of spinal cord decompression sickness? J Neuropathol Exp Neurol. 1988;47(4):475–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Grassmann JP, Schneppendahl J, Hakimi AR, Herten M, Betsch M, Lögters TT, Thelen S, Sager M, Wild M, Windolf J, Jungbluth P, Hakimi M. Hyperbaric oxygen therapy improves angiogenesis and bone formation in critical sized diaphyseal defects. J Orthop Res. 2015;33(4):513–20.  https://doi.org/10.1002/jor.22805.CrossRefPubMedGoogle Scholar
  20. 20.
    Guyton AC. A concept of negative interstitial pressure based on pressure in implanted capsules. Circ Res. 1963;XIIGoogle Scholar
  21. 21.
    Hjelde A, Bergh K, Brubakk AO, Iversen OJ. Complement activation in divers after repeated air/heliox dives and its possible relevance to DCS. J Appl Physiol. 1995;78(3):1140–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang KL, Lin YC. Activation of complement and neutrophils increases vascular permeability during air embolism. Aviat Space Environ Med. 1997;68(4):300–5.PubMedGoogle Scholar
  23. 23.
    Jain KK. Oxygen toxicity. In: Textbook of hyperbaric medicine. Cham: Springer; 2017. p. 49–60.CrossRefGoogle Scholar
  24. 24.
    Kalns J, Lane J, Delgado A, Scruggs J, Ayala E, Gutierrez E, et al. Hyperbaric oxygen exposure temporarily reduces mac-1 mediated functions of human neutrophils. Immunol Lett. 2002;83(2):125–31. 12067761PubMedCrossRefGoogle Scholar
  25. 25.
    Kitano M, Hayashi K, Kawashima M. Three autopsy cases of acute decompression sickness consideration of pathogenesis about spinal cord damage in decompression sickness. Jpn Orthop Traum. 1977;26:402.Google Scholar
  26. 26.
    Loset A Jr, Mollerlokken A, Berge V, Wisloff U, Brubakk AO. Post-dive bubble formation in rats: effects of exercise 24 h ahead repeated 30min before the dive. Aviat Space Environ Med. 2006;77(9):905–8.PubMedGoogle Scholar
  27. 27.
    Madden LA, Laden G. Gas bubbles may not be the underlying cause of decompression illness - the at-depth endothelia dysfunction hypothesis. Med Hypothesis. 2009;72:389–92.CrossRefGoogle Scholar
  28. 28.
    Mathieu D, Marroni A, Kot J. Consensus conference of hyperbaric medicine. Diving Hyperb Med. 2017;47(1):24–32.PubMedGoogle Scholar
  29. 29.
    Mollerlokken A, Berge VJ, Jorgensen A, Wisloff U, Brubakk AO. Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs. J Appl Physiol. 2006;101(6):1541–5.PubMedCrossRefGoogle Scholar
  30. 30.
    National Oceanic and Atmospheric Administration. NOAA diving manual: Diving for science and technology. 6th ed. revised. Washington: DC; 2017.Google Scholar
  31. 31.
    Papadopoulou V, Tang M, Belestra C, Thodoris RJE, Karapantsios TD. Circulatory bubble dynamics: from physical to biological aspects. Adv Colloid Interface Sci Elsevier. 2014;206:239–49.PubMedCrossRefGoogle Scholar
  32. 32.
    Patra M. Laterall-Pressure Profiles in Cholesterol-DPPC Bilayers, arXiv:cond-mat/0504101v1 [cond-mat.soft] 5 April 2005.Google Scholar
  33. 33.
    Philp RB, Freeman D, Francey I, Bishop B. Hematology and blood chemistry in saturation diving: I. Antiplatelet drugs, aspirin, and VK744. Undersea Biomed Res. 1975;2(4):233–49.PubMedGoogle Scholar
  34. 34.
    Pontier JM, Blatteau JE, Vallée N. Blood platelet count and severity of decompression sickness in rats after a provocative dive. Aviat Space Environ Med. 2008;79(8):761–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Pontier JM, Jimenez C, Blatteau JE. Blood platelet count and bubble formation after a dive to 30 msw for 30 min. Aviat Space Environ Med. 2008;79(12):1096–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Schlimp CJ, Bothma PA, Brodbeck AE. Cerebral venous air embolism: what is it and do we know how to deal with it properly? JAMA Neurol. 2014;71(2):243.  https://doi.org/10.1001/jamaneurol.2013.5414.CrossRefPubMedGoogle Scholar
  37. 37.
    Sparacia G, Banco A, Sparacia B, Midiri M, Brancatelli G, Accardi M, et al. Magnetic resonance findings in scuba diving-related spinal cord decompression sickness. MAGMA. 1997;5(2):111–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Spencer MP, Johanson DC. Investigation of new principles for human decompression schedules using the Doppler ultrasonic blood detector. Tech report to ONR on contract N00014–73-C-0094. Seattle, Washington: Institute for Environmental Medicine and Physiology; 1974.Google Scholar
  39. 39.
    Stickland MK, Lovering AT. Exercise-induced intra pulmonary arteriovenous shunting and pulmonary gas exchange. Exerc Sport Sci Rev. 2006;34(3):99–106.PubMedCrossRefGoogle Scholar
  40. 40.
    Tetzlaff K, Friege L, Hutzelmann A, Reuter M, Holl D, Leplow B. Magnetic resonance signal abnormalities and neuropsychological deficits in elderly compressed-air divers. Eur Neurol. 1999;42(4):194–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Thom SR. Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg. 2011;127:131S–41S.  https://doi.org/10.1097/PRS.0b013e3181fbe2bf.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Thom SR, Elbuken ME. Oxygen-dependent antagonism of lipid peroxidation. Free Radic Biol Med. 1991;10:413–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Tikuisis P. Modeling the observations of in vivo bubble formation with hydrophobic crevices. Undersea Biomed Res. 1986;13(2):165–80.PubMedGoogle Scholar
  44. 44.
  45. 45.
    Van Poucke S, Jorens P, Beaucourt L. Chapter 1.7 Physiologic effects of hyperbaric oxygen on ischemia-reperfusion phenomenon. In: Mathieu D, editor. Handbook on hyperbaric medicine: Springer; 2006.Google Scholar
  46. 46.
    Walder DN. Prevention of DCS in compressed air workers. In: Bennett PB, Elliott DH, editors. The physiology and medicine of diving and compressed air work. 1st ed. London: Bailliére Tindall and Cassell; 1969. p. 437–50.Google Scholar
  47. 47.
    Walder DN. Adaptation to decompression sickness in caisson work. Biometeor. 1968;11:350–9.Google Scholar
  48. 48.
    Ward CA, McCullough D, Fraser WD. Relation between complement activation and susceptibility to decompression sickness. J Appl Physiol. 1987;62:1160–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Wienke BR. Diving decompression models and bubble metrics: modern computer synthesis. Comput Biol Med. 2009;39(2009):309–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Yu X, Xu J, Huang G, Zhang K, Qing L, Liu W, et al. Bubble-induced endothelial microparticles promote endothelial dysfunction. PLoS One. 2017;12(1):e0168881.  https://doi.org/10.1371/journal.pone.0168881.
  51. 51.
    Yusupov M, Wende K, Kupsch S, Neyts EC, Reuter S, Bogaerts A. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments, Scientific Reports 7, Article number: 5761(2017)  https://doi.org/10.1038/s41598-017-06412-8.
  52. 52.
    Zhang K, et al. Endothelial dysfunction correlates with decompression bubbles in rats. Sci Rep. 2016;6:33390.  https://doi.org/10.1038/srep33390.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhu J, Hullett JB, Somera L, Barbee RW, Ward KR, Berger BE, et al. Intravenous perfluorocarbon emulsion increases nitrogen washout after venous gas emboli in rabbits. Undersea Hyperb Med. 2007;34(1):7–20.PubMedGoogle Scholar

Suggested Reading

  1. Aksoy FG. MR imaging of subclinical cerebral decompression sickness. A case report. Acta Radiol. 2003;44(1):108–10.PubMedCrossRefGoogle Scholar
  2. Anaesthesia UK; spinal cord; www.frca.co.uk/article.aspx?articleid=100360. Accessed 30.01.2016.
  3. Antonelli C, Franchi F, Della Marta ME, Carinci A, Sbrana G, Tanasi P, De Fina L, Brauzzi M. Guiding principles in choosing a therapeutic table for DCI hyperbaric therapy. Minerva Anaestesiol. 2009;75(3):151–61.Google Scholar
  4. Arness MK. Scuba decompression illness and diving fatalities in an overseas military community. Aviat Space Environ Med. 1997;68(4):325–33.PubMedGoogle Scholar
  5. Aslam F, Shirani J, Haque AA. Patent foramen ovale: assessment, clinical significance and therapeutic options. South Med J. 2006;99(12):1367–72.PubMedCrossRefGoogle Scholar
  6. Assessing Fitness to Return to Diving After Decompression Illness: DMAC 13 Rev. 1 – October 1994.Google Scholar
  7. Auten JD, Kuhne MA, Walker HM, Porter HO. Neurologic decompression sickness following cabin pressure fluctuations at high altitude. Aviat Space Environ Med. 2010;81(4):427–30.PubMedCrossRefGoogle Scholar
  8. Barratt DM, Van Meter K. Decompression sickness in Miskito Indian lobster divers: review of 229 cases. Aviat Space Environ Med. 2004;75(4):350–3.PubMedGoogle Scholar
  9. Bennett MH, Lehm JP, Mitchell SJ, Wasiak J. Recompression and adjunctive therapy for decompression illness. Cochrane Database Syst Rev. 2012;5:CD005277.Google Scholar
  10. Bennett PB, Elliott DH. The physiology and medicine of diving and compressed air work. 2nd ed. Baltimore: Lippincott William & Wilkins; 1975.Google Scholar
  11. Marroni A, Bennett PB, Cronje FJ, Carli-Corleo R, Germonpre P, Pieri M, Bonuccelli C, Balestra B. A deep stop during decompression from 82 few (25 m) significantly reduces bubbles and fast tissue gas tension. UHM. 2004;31(2):233–43.Google Scholar
  12. Goldman S. A new class of biophysical models for predicting the probability of decompression sickness in scuba diving. J Appl Physiol. 2007;103:484–93.PubMedCrossRefGoogle Scholar
  13. Berge VJ, Jørgensen A, Løset A, Wisløff U, Brubakk AO. Exercise ending 30 min pre-dive has no effect on bubble formation in the rat. Aviat Space Environ Med. 2005;76(4):326–8.PubMedGoogle Scholar
  14. Bessereau J, Coulange M, Genotelle N, Barthélémy A, Michelet P, Bruguerolle B, et al. Aspirin in decompression sickness. Therapie. 2008;63(6):419–23.PubMedCrossRefGoogle Scholar
  15. Bhardwaj A, Ulatowski JA. Cerebral edema: hypertonic saline solutions. Curr Treat Options Neurol. 1999;1:179–88.PubMedCrossRefGoogle Scholar
  16. Blatteau JE, Boussuges A, Gempp E, Pontier JM, Castagna O, Robinet C, et al. Haemodynamic changes induced by submaximal exercise before a dive and its consequences on bubble formation. Br J Sports Med. 2007;41(6):375–9.PubMedCrossRefGoogle Scholar
  17. Blatteau JE, Gempp E, Balestra C, Mets T, Germonpre P. Predive sauna and venous gas bubbles upon decompression from 400 kPa. Aviat Space Environ Med. 2008;79(12):1100–5.PubMedCrossRefGoogle Scholar
  18. Blatteau JE, Gempp E, Simon O, Coulange M, Delafosse B, Souday V, et al. Prognostic factors of spinal cord decompression sickness in recreational diving: retrospective and multicentric analysis of 279 cases. Neurocrit Care. 2011;15(1):120–7.PubMedCrossRefGoogle Scholar
  19. Blatteau JE, Jean F, Pontier JM, Blanche E, Bompar JM, Meaudre E. Decompression sickness accident management in remote areas. Use of immediate in-water recompression therapy. Review and elaboration of a new protocol targeted for a mission at Clipperton atoll. Ann Fr Anesth Reanim. 2006;25(8):874–83.PubMedCrossRefGoogle Scholar
  20. Blatteau JE, Brubakk AO, Gempp E, Castagna O, Risso JJ, Vallee N. Sildenafil pre-treatment promotes decompression sickness in rats. PLoS One. 2013;8:e60639.Google Scholar
  21. Blogg SL, Loveman GA, Seddon FM, Woodger N, Koch A, Reuter M, et al. Magnetic resonance imaging and neuropathology findings in the goat nervous system following hyperbaric exposures. Eur Neurol. 2004;52(1):18–28.PubMedCrossRefGoogle Scholar
  22. Bove AA. Risk of decompression sickness with patent foramen ovale. Undersea Hyperb Med. 1998;25(3):175–8.PubMedGoogle Scholar
  23. Brain Trauma Foundation. American Association of Neurological Surgeons, joint section on Neurotrauma and critical care: guidelines for cerebral perfusion pressure. J Neurotrauma. 2000;17:507–11.CrossRefGoogle Scholar
  24. Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol. 2004;286:H1910–5.Google Scholar
  25. Brott TG. NIH Stroke/Score (NIHSS), http://www.mdcal.com/nih-stroke-scale-score-nihss/#how-to-use. Accessed 07.10.2015.
  26. Brubakk AO, Arntzen AJ, Wienke BR, Koteng S. Decompression profile and bubble formation after dives with surface decompression: experimental support for a dual phase model of decompression. Undersea Hyperb Med. 2003;30:181–93.PubMedGoogle Scholar
  27. Brubakk AO, Neuman TS, editors. Bennett and Elliott’s physiology and medicine of diving. 5th ed. London: Saunders; 2003.Google Scholar
  28. Bruno A, Williams LS, Kent TA. How important is hyperglycemia during acute brain infarction? Neurologist. 2004;10:195–200.PubMedCrossRefGoogle Scholar
  29. Buch DA, El Moalem H, Dovenbarger JA, Uguccioni DM, Cigarette MRE. Smoking and decompression illness severity: a retrospective study in recreational divers. Aviat Space Environ Med. 2003;74(12):1271–4.PubMedGoogle Scholar
  30. Butler BD, Little T, Cogan V, Powell M. Hyperbaric oxygen pre-breathe modifies the outcome of decompression sickness. Undersea Hyperb Med. 2006;33(6):407–17.PubMedGoogle Scholar
  31. Camporesi EM. Diving and pregnancy. Semin Perinatol. 1996;20(4):292–302.PubMedCrossRefGoogle Scholar
  32. Candito M, Candito E, Chatel M, van Obberghen E, Dunac A. Homocysteinemia and thrombophilic factors in unexplained decompression sickness. Rev Neurol (Paris). 2006;162(8–9):840–4.CrossRefGoogle Scholar
  33. Candito M, Chatel M, Candito E, Lapoussiere M, Mengual R, Van Obberghen E, et al. Thrombophilic factors in divers with undeserved decompression sickness. Pathol Biol (Paris). 2006;54(3):155–8.CrossRefGoogle Scholar
  34. Cartoni D, De Castro S, Valente G, Costanzo C, Pelliccia A, Beni S, et al. Identification of professional scuba divers with patent foramen ovale at risk for decompression illness. Am J Cardiol. 2004;94(2):270–3.PubMedCrossRefGoogle Scholar
  35. Carturan D, Boussuges A, Burnet H, Fondarai J, Vanuxem P, Gardette B. Circulating venous bubbles in recreational diving: relationships with age, weight, maximal oxygen uptake and body fat percentage. Int J Sports Med. 1999;20(6):410–4.PubMedCrossRefGoogle Scholar
  36. Chang Y, Chen TY, Chen CH, Crain BJ, Toung TJ, Bhardwaj A. Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy. J Appl Physiol. 2006;100:1445–51.PubMedCrossRefGoogle Scholar
  37. Chappell M. Modelling and measurement of bubbles in decompression sickness, University of Oxford; 2006. https://users.fmrib.ox.ac.uk/~Chappell/papers/m_chappell_thesis.pdf. (Accessed 16 Oct 2016).
  38. Cheshire WP. Headache and facial pain in scuba divers. Curr Pain Headache Rep. 2004;8:315–20.PubMedCrossRefGoogle Scholar
  39. Chryssanthou C. Animal model of human disease: dysbaric osteonecrosis. AM J Pathol. 1981;103(2):334–6.PubMedPubMedCentralGoogle Scholar
  40. Cimsit M, Ilgezdi S, Cimsit C, Uzun G. Dysbaric osteonecrosis in experienced dive masters and instructors. Aviat Space Environ Med. 2007;78(12):1150.PubMedCrossRefGoogle Scholar
  41. Clenney TL, Lassen LF. Recreational scuba diving injuries. Am Fam Physician. 1996;53:1761–6.PubMedGoogle Scholar
  42. Dainer H, Nelson J, Brass K, Montcalm-Smith E, Mahon R. Short oxygen prebreathing and intravenous perfluorocarbon emulsion reduces morbidity and mortality in a swine saturation model of decompression sickness. J Appl Physiol. 2007;102(3):1099–104.PubMedCrossRefGoogle Scholar
  43. de Watteville G. A critical assessment of Trendelenburg’s position in the acute phase after a diving accident. Schweiz Z Sportmed. 1993;41(3):123–5.Google Scholar
  44. Dietrich A. U. S. navy diving Manual: air diving: 1. New York: Diane Pub Co; 1999.Google Scholar
  45. Diringer MN, Zazulia AR. Osmotic therapy: fact or fiction. Neurocrit Care. 2004;1:219–34.PubMedCrossRefGoogle Scholar
  46. Divers Alert Network, de Lisle Dear G. Asthma and diving. Available at: http://www.diversalertnetwork.org/medical/articles/article.asp?articleid=22. Accessed 02.03.2015.
  47. Divers Alert Network. Annual diving report 2006 edition. Durham, North Carolina, US: Divers Alert Network; Oct 11, 2006.Google Scholar
  48. Divers Alert Network. Report on decompression illness, diving fatalities and project dive exploration 2005 edition. Durham, North Carolina: Divers Alert Network; 2005.Google Scholar
  49. Doolette DJ, Mitchell SJ. Biophysical basis for inner ear decompression sickness. J Appl Physiol. 2003;94:2145–50.PubMedCrossRefGoogle Scholar
  50. Drighil A, El Mosalami H, Elbadaoui N, Chraibi S, Bennis A. Patent foramen ovale: a new disease? Int J Cardiol. 2007;122(1):1–9.PubMedCrossRefGoogle Scholar
  51. Dromsky DM, Spiess BD, Treatment FA. Of decompression sickness in swine with intravenous perfluorocarbon emulsion. Aviat Space Environ Med. 2004;75(4):301–5.PubMedGoogle Scholar
  52. Duggan C, Fontaine O, Pierce NF, et al. Scientific rationale for a change in the composition of oral rehydration solution. JAMA. 2004;291(21):2628–31.PubMedCrossRefGoogle Scholar
  53. Dujic Z, Palada I, Obad A, Duplancic D, Brubakk AO, Valic Z. Exercise-induced intrapulmonary shunting of venous gas emboli does not occur after open-sea diving. J Appl Physiol. 2005;99(3):944–9.PubMedCrossRefGoogle Scholar
  54. Dujic Z, Palada I, Valic Z, Duplancic D, Obad A, Wisløff U. Exogenous nitric oxide and bubble formation in divers. Med Sci Sports Exerc. 2006;38(8):1432–5.PubMedCrossRefGoogle Scholar
  55. Dunford RG, Vann RD, Gerth WA, Pieper CF, Huggins K, Wacholtz C, et al. The incidence of venous gas emboli in recreational diving. Undersea Hyperb Med. 2002;29(4):247–59.PubMedGoogle Scholar
  56. Eccher M, Suarez JI. Cerebral edema and intracranial pressure. Monitoring and intracranial dynamics. In: Suarez JI, editor. Critical care neurology and neurosurgery. Totowa: Humana Press; 2004. p. 47–100.CrossRefGoogle Scholar
  57. Edmonds CW, Lowry C, Pennefather JW. Diving and subaquatic medicine. 4th ed. London: Edward Arnold; 2005.Google Scholar
  58. Ehm OF. Tauchen - noch sicherer!. 5. Auflage. Zürich: Müller Rueschlikon; 1991.Google Scholar
  59. Endres M, Dirnagl U, Moskowitz MA. The ischemic cascade and mediators of ischemic injury, stroke, part I, chapter 2. In: Handbook of clinical neurology, vol. 92. Philadelphia: Elsevier; 2009. p. 31–41.Google Scholar
  60. Fahlman. On the physiology of hydrogen diving and its implication for hydrogen biochemical Dekompression;B.Sc. Hawaii Pacific University; 1996.Google Scholar
  61. Fahlman A, Dromsky DM. Dehydration effects on the risk of severe decompression sickness in a swine model. Aviat Space Environ Med. 2006;77(2):102–6.PubMedPubMedCentralGoogle Scholar
  62. Francis A, Baynosa R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways: a review of cellular mechanisms. Diving Hyperb Med SPUMS. 2017;47(2):110.Google Scholar
  63. Frank JI. Management of intracranial hypertension. Med Clin North Am. 1993;77:61–76.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Fremont-Smith F, Forbes HS. Intravascular and intracranial pressure: an experimental study. Arch Neurol Psychiatr. 1927;18:550–64.CrossRefGoogle Scholar
  65. Fyneface-Ogan S. Epidural analgesia - current views and approaches. London: InTech; 2010.Google Scholar
  66. Gao GK, Wu D, Yang Y, Yu T, Xue J, Wang X, et al. Cerebral magnetic resonance imaging of compressed air divers in diving accidents. Undersea Hyperb Med. 2009;36(1):33–41.PubMedPubMedCentralGoogle Scholar
  67. Gemma M, Cozzi S, Poccoli C, Magrin S, De Vitis A, Cenzato M. Hypertonic saline fluid therapy following brain stem trauma. J Neurosurg Anesthesiol. 1996;8:137–41.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gemma M, Cozzi S, Tommasino C, Mungo M, Calvi MR, Capriani A, et al. 7.5% hypertonic saline versus 20% mannitol during elective neurosurgical supratentorial procedures. J Neurosurg Anesthesiol. 1997;9:329–34.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gempp E, Blatteau JE, Pontier JM, Balestra C, Louge P. Preventive effect of pre-dive hydration on bubble formation in divers. Br J Sports Med. 2009;43(3):224–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Gempp E, Blatteau JE. Neurological disorders after repetitive breath-hold diving. Aviat Space Environ Med. 2006;77(9):971–3.PubMedPubMedCentralGoogle Scholar
  71. Gempp E, Blatteau JE. Preconditioning methods and mechanisms for preventing the risk of decompression sickness in scuba divers: a review. Res Sports Med. 2010;18(3):205–18.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Gempp E, Blatteau JE, Stephant E, Pontier JM, Constantin P, Peny C. MRI findings and clinical outcome in 45 divers with spinal cord decompression sickness. Aviat Space Environ Med. 2008;79(12):1112–6.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Germonpre P, Dendale P, Unger P, Balestra C. Patent foramen ovale and decompression sickness in sports divers. J Appl Physiol. 1998;84(5):1622–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Gil A, Shupak A, Lavon H, Adir Y. Decompression sickness in divers treated at the Israel Naval Medical Institute between the years 1992 to 1997. Harefuah. 2000;138(9):751–4. 806PubMedPubMedCentralGoogle Scholar
  75. Gold D, Geater A, Aiyarak S, Juengprasert W, Chuchaisangrat B, Samakkaran A. The indigenous fisherman divers of Thailand: in-water recompression. Int Marit Health. 1999;50(1–4):39–48.PubMedPubMedCentralGoogle Scholar
  76. Goldenberg I, Shupak A, Oxy-helium SO. Treatment for refractory neurological decompression sickness: a case report. Aviat Space Environ Med. 1996;67(1):57–60.PubMedGoogle Scholar
  77. Goldhahn RT Jr. Scuba diving deaths: a review and approach for the pathologist. Leg Med Annu. 1976;1977:109–32.Google Scholar
  78. Goplen FK, Grønning M, Irgens A, Sundal E, Nordahl SH. Vestibular symptoms and otoneurological findings in retired offshore divers. Aviat Space Environ Med. 2007;78(4):414–9.PubMedPubMedCentralGoogle Scholar
  79. Gorman D, Sames C, Drewry A, Bodicoat S. A case of type 3 DCS with a radiologically normal spinal cord. Intern Med J. 2006;36(3):193–6.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Gutvik CR, Brubakk AO. A dynamic 2-phase model for vascular bubble formation during decompression of divers, TBME-00076-2008.Google Scholar
  81. Hajat C, Hajat S, Sharma P. Effect of poststroke pyrexia on stroke outcome. A meta-analysis of studies in patients. Stroke. 2000;31:410–4.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Hampson NB, Dunford RG, Kramer CC, Norkool DM. Selection criteria utilized for hyperbaric oxygen treatment of carbon monoxide poisoning. J Emerg Med. 1995;13(2):227–31.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Hardy KR. Diving-related emergencies. Emerg Med Clin North Am. 1997;15(1):223–40.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Hart AJ, White SA, Conboy PJ, Bodiwala G, Quinton D. Open water scuba diving accidents at Leicester: five years’ experience. J Accid Emerg Med. 1999;16(3):198–200.Google Scholar
  85. Harukuni I, Kirsch J, Bhardwaj A. Cerebral resuscitation: role of osmotherapy. J Anesth. 2002;16:229–37.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Helps SC, Gorman DF. Air embolism of the brain in rabbits pretreated with mechlorethamine. Stroke. 1991;22:351–4.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Hennessy TR, Hempleman HV. An examination of the critical released gas concept in decompression sickness. Proc R Soc London B. 1977;197:299–313.CrossRefGoogle Scholar
  88. Holzer M, Bernard SA, Hachimi-Idrissi S, Roine RO, Sterz F, Mullner M, et al. Hypothermia for neuroprotection after cardiac arrest: systematic review and individual patient data meta-analysis. Crit Care Med. 2005;33:414–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Honek T, Veselka J, Tomek A, Srámek M, Janugka J, Sefc L, et al. Paradoxical embolization and patent foramen ovale in scuba divers: screening possibilities. Vnitr Lek. 2007;53(2):143–6.PubMedPubMedCentralGoogle Scholar
  90. Hughes JT. Venous infarction of the spinal cord. Neurology. 1971;21(8):794–800. 82.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Hutter CD. Dysbaric osteonecrosis: a reassessment and hypothesis. Med Hypotheses. 2000;54(4):585–90.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Hyldegaard O, Jensen T. Effect of heliox, oxygen and air breathing on helium bubbles after heliox diving. Undersea Hyperb Med. 2007;34(2):107–22.PubMedPubMedCentralGoogle Scholar
  93. James HE, Langfitt TW, Kumar VS, Ghostine SY. Treatment of intracranial hypertension. Analysis of 105 consecutive, continuous recordings of intracranial pressure. Acta Neurochir. 1977;36:189–200.PubMedCrossRefPubMedCentralGoogle Scholar
  94. James PB. Hyperbaric oxygenation in fluid microembolism. Neurol Res. 2007;29(2):156–61.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Jankowski LW, Tikuisis P, Nishi RY. Exercise effects during diving and decompression on post-dive venous gas emboli. Aviat Space Environ Med. 2004;75(6):489–95.PubMedPubMedCentralGoogle Scholar
  96. Jauch EC. Acute management of stroke, http://emedicine.medscape.com/article/1159752-overview. Accessed 12.7.2015.
  97. Jerrard DA. Diving medicine. Emerg Med Clin North Am. 1992;10(2):329–38.PubMedPubMedCentralGoogle Scholar
  98. Keller H, Buhlmann AA. Deep diving and short decompression by breathing mixed gases. J Appl Physiol. 1965;20:1267.CrossRefGoogle Scholar
  99. Kizer KW. Dysbarism. In: Rosen R, Barken RM, Brean CR, et al., editors. Emergency medicine: concepts and clinical practice: St Louis Mosby; 1992. p. 881–8.Google Scholar
  100. Klingman C, Tetzlaff K. Moderne Tauchmedizin. 2 Auflage ed. Stuttgart: Gentner Verlag; 2012.Google Scholar
  101. Klingmann C, Praetorius M, Baumann I, Plinkert PK. Barotrauma and decompression illness of the inner ear: 46 cases during treatment and follow up. Otol Neurotol. 2007;28:447–54.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Koch AE, Kirsch H, Reuter M, Warninghoff V, Rieckert H, Deuschl G. Prevalence of patent foramen ovale (PFO) and MRI-lesions in mild neurological decompression sickness (type B-DCS/AGE). Undersea Hyperb Med. 2008;35(3):197–205.PubMedPubMedCentralGoogle Scholar
  103. Koch AE, Wegner-Bröse H, Warninghoff V, Deuschl G. Viewpoint: the type A- and the type B-variants of decompression sickness. Undersea Hyperb Med. 2008;35(2):91–7.PubMedPubMedCentralGoogle Scholar
  104. Korenkov AI, Pahnke J, Frei K, Warzok R, Schroeder HW, Frick R, et al. Treatment with nimodipine or mannitol reduces programmed cell death and infarct size following focal cerebral ischemia. Neurosurg Rev. 2000;23:145–50.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Kot J, Sicko Z, Michalkiewicz M, Lizak E, Góralczyk P. Recompression treatment for decompression illness: 5-year report (2003-2007) from National Centre for hyperbaric medicine in Poland. Int Marit Health. 2008;59(1–4):69–80.PubMedPubMedCentralGoogle Scholar
  106. Kunkle TD, Beckman EL. Bubble dissolution physics and the treatment of decompression sickness. Med Phys. 1983;10:184–90.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lafay V. The heart and underwater diving. Arch Mal Coeur Vaiss. 2006;99(11):1115–9.PubMedGoogle Scholar
  108. Lambertson CJ. Effects of excessive pressures of oxygen, nitrogen, helium, carbon dioxide, and carbon monoxide. In: Mountcastle VB, editor. Medical physiology. Missouri: CV Mosby Co.; 1980. p. 1901–46.Google Scholar
  109. Lang EW, Chestnut RM. Intracranial pressure: monitoring and management. Neurosurg Clin N Am. 1994;5:573–605.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Lang MA, Brubakk AO. The future of diving: 100 years of Haldane and beyond. Washington, DC: Smithsonian Institution Scholaryly Press; 2009.Google Scholar
  111. Landsberg PG. South African underwater diving accidents, 1969-1976. S Afr Med J. 1976;50(55):2155–9.PubMedPubMedCentralGoogle Scholar
  112. Leffler CT, White JC. Recompression treatments during the recovery of TWA flight 800. Undersea Hyperb Med. 1997;24(4):301–8.PubMedPubMedCentralGoogle Scholar
  113. Lemaitre F, Carturan D, Tourney-Chollet C, Gardette B. Circulating venous bubbles in children after diving. Pediatr Exerc Sci. 2009;21(1):77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Longphre JM, Denoble PJ, Moon RE, Vann RD, Freiberger JJ. First aid normobaric oxygen for the treatment of recreational diving injuries. Undersea Hyperb Med. 2007;34(1):43–9.PubMedPubMedCentralGoogle Scholar
  115. MacDonald RD, O’Donnell C, Allan GM, Breeck K, Chow Y, DeMajo W. Interfacility transport of patients with decompression illness: literature review and consensus statement. Prehosp Emerg Care. 2006;10(4):482–7.Google Scholar
  116. Magnaes B. Body position and cerebrospinal fluid pressure. Part I: clinical studies on the effect of rapid postural changes. J Neurosurg. 1976;44:687–97.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Manabe Y, Sakai K, Kashihara K, Shohmori T. Presumed venous infarction in spinal decompression sickness. AJNR Am J Neuroradiol. 1998;19(8):1578–80.PubMedPubMedCentralGoogle Scholar
  118. Marabotti C, Chiesa F, Scalzini A, Antonelli F, Lari R, Franchini C, et al. Cardiac and humoral changes induced by recreational scuba diving. Undersea Hyperb Med. 1999;26(3):151–8.PubMedPubMedCentralGoogle Scholar
  119. Marroni A, et al. Chapter 2.2.1 Dysbaric illness. In: Mathieu D, editor. Handbook of hyperbaric medicine: Springer; 2006. p. 173–216.Google Scholar
  120. Mathieu D, Nolf M, Durocher A, et al. Acute carbon monoxide poisoning. Risk of late sequelae and treatment by hyperbaric oxygen. J Toxicol Clin Toxicol. 1985;23:315.PubMedCrossRefPubMedCentralGoogle Scholar
  121. McCormac J, Mirvis SE, Cotta-Cumba C, Shanmuganathan K. Spinal myelopathy resulting from decompression sickness: MR findings in a case and review of the literature. Emerg Radiol. 2002;9(4):240–2.PubMedPubMedCentralGoogle Scholar
  122. McGuire G, Crossley D, Richards J, Wong D. Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med. 1997;25:1059–62.PubMedCrossRefGoogle Scholar
  123. McManus ML, Soriano SG. Rebound swelling of astroglial cells exposed to hypertonic mannitol. Anesthesiology. 1998;88:1586–91.PubMedCrossRefGoogle Scholar
  124. Meijer LA, Leermakers FAM, Lyklema J. Self-consistent-field modeling of complex molecules with united atom detail in inhomogeneous systems. Cyclic and branched foreign molecules in dimyristoylphosphatidylcholine membranes. J Chem Phys. 1999;110(6560):6560–79.CrossRefGoogle Scholar
  125. Mekjavić B, Golden FS, Eglin M, Tipton MJ. Thermal status of saturation divers during operational dives in the North Sea. Undersea Hyperb Med. Edition 3/2001; S. 149–155.Google Scholar
  126. Miller JD, Leech P. Effects of mannitol and steroid therapy on intracranial volume-pressure relationships in patients. J Neurosurg. 1975;42:274–81.PubMedCrossRefGoogle Scholar
  127. Mitchell SJ, Doolette DJ. Selective vulnerability of the inner ear to decompression sickness in divers with right-to-left shunt: the role of tissue gas supersaturation. J Appl Physiol. 2009;106(1):298–301.PubMedCrossRefGoogle Scholar
  128. Montcalm-Smith E, Caviness J, Chen Y, McCarron RM. Stress biomarkers in a rat model of decompression sickness. Aviat Space Environ Med. 2007;78(2):87–93.PubMedGoogle Scholar
  129. Moses H. casualties in individual submarine escape, Bureau of Medicine and Surgery, Navy Department Reserch Project MR005.14–3002-4.17, Report No. 438; 1964.Google Scholar
  130. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75:731–9.PubMedCrossRefGoogle Scholar
  131. Muizelaar JP, van der Poel HG, Li ZC, Kontos HA, Levasseur JE. Pial arteriolar vessel diameter and CO 2 reactivity during prolonged hyperventilation in the rabbit. J Neurosurg. 1988;69:923–7.PubMedCrossRefGoogle Scholar
  132. Neuman TS, Thom SR. Physiology and medicine of hyperbaric oxygen therapy. Philadelphia: Saunders Elsevier; 2008.Google Scholar
  133. Nishi RY. Development of surface decompression tables for helium–oxygen diving to depths of 100msw. Undersea Biomed Res. 1991;18:66–7.Google Scholar
  134. Nishi RY. Development of new helium–oxygen decompression tables for depths to 100 msw. Undersea Biomed Res. 1989;16:26–7.Google Scholar
  135. Obad A, Palada I, Valic Z, Ivancev V, Bakovic D, Wisloff U, et al. The effects of acute oral antioxidants on diving-induced alterations in human cardiovascular function. J Physiol. 2007;578(Pt 3):859–70.PubMedCrossRefGoogle Scholar
  136. O’Connor PE. The nontechnical causes of diving accidents: can U.S. navy divers learn from other industries? Undersea Hyperb Med. 2007;34(1):51–9.Google Scholar
  137. Papadopoulos MC, Saadoun S, Binder DK, Manlet GT, Krishna S, Verkman AS. Molecular mechanisms of brain tumor edema. Neuroscience. 2004;129:1011–20.PubMedCrossRefGoogle Scholar
  138. Parsons MW, Barber PA, Desmond PM, Baird TA, Darby DG, Byrnes G, et al. Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance and spectroscopy study. Ann Neurol. 2002;52:20–8.PubMedCrossRefGoogle Scholar
  139. Pendergast DR, Tedesco M, Nawrocki DM, Fisher NM. Energetics of underwater swimming with SCUBA. Med Sci Sports Exerc. 1996;28:573–80.PubMedGoogle Scholar
  140. Pontier JM, Guerrero F, Castagna O. Bubble formation and endothelial function before and after 3 months of dive training. Aviat Space Environ Med. 2009;80(1):15–9.PubMedCrossRefGoogle Scholar
  141. Pöppel E., Bullinger M. Medizinische Psychologie. VHC ed. Medizin: Weinheim; 1990.Google Scholar
  142. Poungvarin N. Steroids have no role in stroke therapy. Stroke. 2004;35:229–30.PubMedCrossRefGoogle Scholar
  143. Pulley SA. Decompression Sickness, http://emedicine.medscape.com/article/769717-overview. Access date 8.10.2015.
  144. Qureshi AI, Suarez JI, Bhardwaj A, Mirski M, Schnitzer MS, Hanley DF, et al. Use of hypertonic (3%) saline/acetate infusion in the treatment of cerebral edema: effect on intracranial pressure and lateral displacement of the brain. Crit Care Med. 1998;26:440–6.PubMedCrossRefGoogle Scholar
  145. Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28:3301–13.PubMedCrossRefGoogle Scholar
  146. Qureshi AI, Wilson DA, Traystman RJ. Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: comparison between mannitol and hypertonic saline. Neuro Surg. 1999;44:1055–64.Google Scholar
  147. Rabinstein AA. Found comatose. In: Rabinstein AA, Wijdicks EFM, editors. Tough calls in acute neurology. Philadelphia: Elsevier; 2004. p. 3–18.Google Scholar
  148. Rabinstein AA. Treatment of brain edema. Neurologist. 2006;12:59–73.PubMedCrossRefGoogle Scholar
  149. Reinertsen RE, Flook V, Koteng S, Brubakk AO. 1996 Effect on oxygen tension and rate of pressure reduction during decompression on central gas bubbles; http://jap.physiology.org/content/jap/84/1/351.full.pdf. Accessed 4/7/2017.
  150. Reuter M, Tetzlaff K, Hutzelmann A, Fritsch G, Steffens JC, Bettinghausen E, et al. MR imaging of the central nervous system in diving-related decompression illness. Acta Radiol. 1997;38(6):940–4.PubMedCrossRefGoogle Scholar
  151. Reuter M, Tetzlaff K, Warninghoff V, et al. Computed tomography of the chest in diving-related pulmonary barotrauma. Br J Radiol. 1997;70(833):440–5.PubMedCrossRefGoogle Scholar
  152. Riede UN, Werner M, Freudenberg N. Basiswissen Allgemeine und Spezielle Pathologie. 2nd ed. Stuttgart: Georg Thieme Verlag; 2009.CrossRefGoogle Scholar
  153. Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo controlled trial. Lancet. 2004;364:1321–8.PubMedCrossRefGoogle Scholar
  154. Rockswold GL, Ford SE, Anderson DC, Bergman TA, Sher man RE. Results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. J Neurosurg. 1992;76:929–34.PubMedCrossRefGoogle Scholar
  155. Ropper AH, Gress DR, Diringer MN, Green DM, Mayer SA, editors. Neurological and neurosurgical intensive care. Philadelphia: Lippincott, Williams & Wilkins; 2004. p. 26–51.Google Scholar
  156. Ropper AH, O’Rourke D, Kennedy SK. Head position, intra cranial pressure, and compliance. Neurology. 1982;32:1288–91.Google Scholar
  157. MJ CIB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986;65:636–41.CrossRefGoogle Scholar
  158. Sastry S, MacNab A, Daly K, Ray S, McCollum C. Transcranial Doppler detection of venous-to-arterial circulation shunts: criteria for patent foramen ovale. J Clin Ultrasound. 2009;37(5):276–80.PubMedCrossRefGoogle Scholar
  159. Schell RM, Applegate RL II, Cole DJ. Salt, starch, and water on the brain. J Neurosurg Anesthesiol. 1996;8:178–82.PubMedCrossRefGoogle Scholar
  160. Schipke JD, Gams E, Kallweit O. Decompression sickness following breath-hold diving. Res Sports Med. 2006;14(3):163–78.PubMedCrossRefGoogle Scholar
  161. Schmoker J, Zhuang J, Shackford S. Hypertonic fluid resuscitation improves cerebral oxygen delivery and reduces intracranial pressure after hemorrhagic shock. J Trauma. 1991;31:1607–13.PubMedCrossRefGoogle Scholar
  162. Schrot RJ, Muizelaar JP. Mannitol in acute traumatic brain injury. Lancet. 2002;359:1633–4.PubMedCrossRefGoogle Scholar
  163. Schwab S, Geordiadis D, Berrouschot J, Schellinger PD, Graf fag nino C, Mayer SA. Feasibility and safety of moderate hypothermia in acute ischemic stroke. Stroke. 2001;32:2033–5.PubMedCrossRefGoogle Scholar
  164. Schwarz S, Georgiadis D, Aschoff A, Schwab S. Effects of body position on intracranial pressure and cerebral perfusion in patients with large hemispheric stroke. Stroke. 2002;33:497–501.PubMedCrossRefGoogle Scholar
  165. Schwarz S, Georgiadis D, Aschoff A, Schwab S. Effects of hypertonic (10%) saline in patients with raised intracranial pressure after stroke. Stroke. 2002;33:136–40.PubMedCrossRefGoogle Scholar
  166. Schwarz S, Schwab S, Bertram M, Aschoff A, Hacke W. Effect of hypertonic saline hydroxyethyl starch solution and mannitol in patients with increased intracranial pressure after stroke. Stroke. 1998;29:1550–5.PubMedCrossRefGoogle Scholar
  167. Scubamed. Underwater medicine 2008. Dominica. January 12–19. Available at: http://www.scubamed.com/tuum_prg.htm. Accessed 15.05.2013.
  168. Shastri KA, Logue GL, Lundgren CE, Logue CJ, Suggs DF. Diving decompression fails to activate complement. Undersea Hyperb Med. 1997;24(2):51–7.PubMedGoogle Scholar
  169. Shupak A, Gil A, Nachum Z, Miller S, Gordon CR, Tal D. Inner ear decompression sickness and inner ear barotrauma in recreational divers: a long-term follow-up. Laryngoscope. 2003;113(12):2141–7.PubMedCrossRefGoogle Scholar
  170. Shupak A, Melamed Y, Ramon Y, Bentur Y, Abramovich A, Kol S. Helium and oxygen treatment of severe air-diving-induced neurologic decompression sickness. Arch Neurol. 1997;54(3):305–11.PubMedCrossRefGoogle Scholar
  171. Sinha S, Bastin ME, Wardlaw JM, Armitage PA, Whittle IR. Effects of dexamethasone on peritumoral oedematous brain: a DT-MRI study. J Neurol Neurosurg Psychiatry. 2004;75:1632–5.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Slivka AP, Murphy EJ. High-dose methylprednisolone treatment in experimental focal cerebral ischemia. Exp Neurol. 2001;167:166–72.PubMedCrossRefGoogle Scholar
  173. Smerz RW. Age associated risks of recreational scuba diving. Hawaii Med J. 2006;65(5):140–1. 153PubMedGoogle Scholar
  174. Sobakin AS, Wilson MA, Lehner CE, Dueland RT, Gendron-Fitzpatrick AP. Oxygen pre-breathing decreases dysbaric diseases in UW sheep undergoing hyperbaric exposure. Undersea Hyperb Med. 2008;35(1):61–7.PubMedGoogle Scholar
  175. Spiess BD, Zhu J, Pierce B, Weis R, Berger BE, Reses J, et al. Effects of perfluorocarbon infusion in an anesthetized swine decompression model. J Surg Res. 2009;153(1):83–94.PubMedCrossRefGoogle Scholar
  176. Spiess BD. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J Appl Physiol. 2009;106(4):1444–52.PubMedCrossRefGoogle Scholar
  177. Spira A. Diving and marine medicine review part II: diving diseases. J Travel Med. 1999;6(3):180–98.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Stringer WA, Hasso AN, Thompson JR, Hinshaw DB, Jordan KG. Hyperventilation-induced cerebral ischemia in patients with acute brain lesions: demonstration by xenon-enhanced CT. AJNR Am J Neuroradiol. 1993;14(2):475–84.PubMedPubMedCentralGoogle Scholar
  179. Su CL, Wu CP, Chen SY, Kang BH, Huang KL, Lin YC. Acclimatization to neurological decompression sickness in rabbits. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1214–8.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Suarez JI, Qureshi AI, Bhardwaj A, Williams MA, Schnitzer MS, Mirski M, et al. Treatment of refractory intracranial hypertension with 23.4% saline. Crit Care Med. 1998;26:1118–22.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Taylor DM, Lippmann J, Smith D. The absence of hearing loss in otologically asymptomatic recreational scuba divers. Undersea Hyperb Med. 2006;33(2):135–41.PubMedPubMedCentralGoogle Scholar
  182. Tempel R, Severance HW. Proposing short-term observation units for the management of decompression illness. Undersea Hyperb Med. 2006;33(2):89–94.PubMedPubMedCentralGoogle Scholar
  183. Tetzlaff K, Thorsen E. Breathing at depth: physiologic and clinical aspects of diving while breathing compressed gas. Clin Chest Med. 2005;26:355–80.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Thenuwara K, Todd MM, Brian JE Jr. Effect of mannitol and furosemide on plasma osmolality and brain water. Anesthesiology. 2002;96:416–21.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Tietjen CS, Hurn PD, Ulatowski JA, Kirsch JR. Treatment modalities for hypertensive patients with intracranial pathology: options and risks. Crit Care Med. 1996;24:311–22.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Tomassoni AJ. Cardiac problems associated with dysbarism. Cardiol Clin. 1995;13(2):266–71.PubMedPubMedCentralGoogle Scholar
  187. Toung TJ, Chang Y, Lin J, Bhardwaj A. Increases in lung and brain water following experimental stroke: effect of mannitol and hypertonic saline. Crit Care Med. 2005;33:203–8.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Toung TJ, Chen CH, Lin C, Bhardwaj A. Osmotherapy with hypertonic saline attenuates water content in brain and extra cerebral organs. Crit Care Med. 2007;35:526–31.PubMedCrossRefPubMedCentralGoogle Scholar
  189. Toung TJ, Hurn PD, Traystman RJ, Bhardwaj A. Global brain water increases after experimental focal cerebral ischemia: effect of hypertonic saline. Crit Care Med. 2002;30:644–9.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Trevett AJ, Sheehan C, Forbes R. Decompression illness presenting as breast pain. Undersea Hyperb Med. 2006;33(2):77–9.PubMedPubMedCentralGoogle Scholar
  191. Tufan K, Ademoglu A, Kurtaran E, Yildiz G, Aydin S, Egi SM. Automatic detection of bubbles in the subclavian vein using Doppler ultrasound signals. Aviat Space Environ Med. 2006;77(9):957–62.PubMedPubMedCentralGoogle Scholar
  192. Undersea Medical Society. Program and abstracts: undersea medical society annual scientific meeting. 11-14 June 1985, Long Beach, California. Undersea Biomed Res. 1985;12(1 Suppl):1–65.Google Scholar
  193. van der Hulst GA, Buzzacott PL. Diver health survey score and probability of decompression sickness among occupational dive guides and instructors. Diving Hyperb Med. 2012;42(1):18–23.PubMedPubMedCentralGoogle Scholar
  194. Van Rees Vellinga TP, Verhoeven AC, Van Dijk FJ, Sterk W. Health and efficiency in trimix versus air breathing in compressed air workers. Undersea Hyperb Med. 2006;33(6):419–27.PubMedPubMedCentralGoogle Scholar
  195. Vann RD, Butler FK, Mitchell SJ, Moon RE. Decompression illness. Lancet. 2011;377:153–64.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Vann RD, Clark HG. Bubble growth and mechanical properties of tissue in decompression. Undersea Biomed Res. 1975;2:185–94.PubMedGoogle Scholar
  197. Wakai A, Roberts I, Schierhout G. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev. 2007;1:CD001049.Google Scholar
  198. Wang J, Corson K, Minky K, Mader J. Diver with acute abdominal pain, right leg paresthesias and weakness: a case report. Undersea Hyperb Med. 2002;29(4):242–6.PubMedPubMedCentralGoogle Scholar
  199. Ward CL. Scuba diving - biologic and physical aspects. Aeromed Rev. 1967;1:1–25.PubMedPubMedCentralGoogle Scholar
  200. Weaver LK. Monoplace hyperbaric chamber use of U.S. navy table 6: a 20-year experience. Undersea Hyperb Med. 2006;33(2):85–8.PubMedPubMedCentralGoogle Scholar
  201. Weisher DD. Resolution of neurological DCI after long treatment delays. Undersea Hyperb Med. 2008;35(3):159–61.PubMedPubMedCentralGoogle Scholar
  202. Wienke BR. Basic decompression theory and application. Flagstaff: Best Publishing Company; 2001.Google Scholar
  203. Williams ST, Prior FG, Bryson P. Hematocrit change in tropical scuba divers. Wilderness Environ Med. 2007;18(1):48–53. [Medline]PubMedCrossRefPubMedCentralGoogle Scholar
  204. Wilmshurst PT, Nightingale S, Walsh KP, Morrison WL. Effect on migraine of closure of cardiac right-to-left shunts to prevent recurrence of decompression illness or stroke or for haemodynamic reasons. Lancet. 2000;356(9242):1648–51.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Wisløff U, Brubakk AO. Aerobic endurance training reduces bubble formation and increases survival inrats exposed to hyperbaric pressure. J Physiol. 2001;537(Pt 2):607–11.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Wisløff U, Richardson RS, Brubakk AO. Exercise and nitric oxide prevent bubble formation: a novel approach to the prevention of decompression sickness? J Physiol. 2004;555:825–9.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Wisløff U, Richardson RS, Brubakk AO. NOS inhibition increases bubble formation and reduces survival in sedentary but not exercised rats. J Physiol. 2003;546:577–82.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Wolf AL, Levi L, Marmarou A, Ward JD, Muizelaar PJ, Choi S, et al. Effect of THAM upon outcome in severe head injury: a randomized prospective clinical trial. J Neurosurg. 1993;78:54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Xing C, Arai LEH. Pathophysiologic Cascade in ischemic stroke. Int J Stroke. 2012;7:378–85.PubMedPubMedCentralCrossRefGoogle Scholar
  210. Yoshiyama M, Asamoto S, Kobayashi N, Sugiyama H, Doi H, Sakagawa H, et al. Spinal cord decompression sickness associated with scuba diving: correlation of immediate and delayed magnetic resonance imaging findings with severity of neurologic impairment--a report on 3 cases. Surg Neurol. 2007;67(3):283–7.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Zhang Q, Chang Q, Cox RA, Gong X, Gould LJ. Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. J Invest Dermatol. 2008;128(8):2102–12. pmid:18337831PubMedCrossRefPubMedCentralGoogle Scholar
  212. Zhang Q, Gould LJ. Hyperbaric oxygen reduces matrix metalloproteinases in ischemic wounds through a redox-dependent mechanism. J Investig Dermatol. 2013;134:237–46.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Zhao Y, Vanhoutte PM, Leung SWS. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci. 2015;129:83–94.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Olaf Rusoke-Dierich
    • 1
  1. 1.Townsville Australia

Personalised recommendations