Advertisement

Digital Connected Production: Wearable Manufacturing Information Systems

  • Stefan Schönig
  • Stefan Jablonski
  • Andreas Ermer
  • Ana Paula Aires
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10697)

Abstract

A manufacturing information system is targeted for use anywhere production is taking place. Modern manufacturing information systems are generally computerized and are designed to collect and present the data which production operators need in order to plan and direct operations within the production. The application of mobile and wearable devices can support operators’ tasks without distracting them from their core duties. In this paper, we present an approach towards a wearable manufacturing information system that is able to implement decentralized production monitoring and control and supports users in their core tasks. Building upon acquired and digitally stored production data, these devices provide different user-specific information and services when required. A practical example from corrugation industry highlights advantages of mobile devices compared to conventional centralized systems in the field of manufacturing.

Keywords

Production information systems Process monitoring Smart devices Wearables Industry 4.0 

References

  1. 1.
    Tao, F., Cheng, Y., Zhang, L., Nee, A.: Advanced manufacturing systems: socialization characteristics and trends. J. Intell. Manuf. 1–16 (2015)Google Scholar
  2. 2.
    Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  3. 3.
    Westkamp, M.: Einsatz und Nutzenpotenziale von Data Mining in Produktionsunternehmen. Studie Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart (2014)Google Scholar
  4. 4.
    Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., Schlund, S.: Produktionsarbeit der Zukunft-Industrie 4.0. Fraunhofer Verlag Stuttgart (2013)Google Scholar
  5. 5.
    Arnaiz Irigaray, A., Gilabert, E., Jantunen, E., Adgar, A.: Ubiquitous computing for dynamic condition-based maintenance. J. Qual. Maint. Eng. 15(2), 151–166 (2009)CrossRefGoogle Scholar
  6. 6.
    Poslad, S.: Ubiquitous Computing: Smart Devices, Environments and Interactions. Wiley, Chichester (2011)Google Scholar
  7. 7.
    Günthner, W.A., Wölfle, M., Fischer, R., Potthast, J.-M., Baumgarten, S., Schneider, O., Hohenstein, F.: Wearable Computing und RFID in Produktion und Logistik-Ansätze zur bereichsübergreifenden Nutzung digitaler Informationen. Log. J. 10–2011 (2011)Google Scholar
  8. 8.
    Pistofidis, P., Emmanouilidis, C., Koulamas, C., Karampatzakis, D., Papathanassiou, N.: A layered e-maintenance architecture powered by smart wireless monitoring components. In: Industrial Technology (ICIT), pp. 390–395. IEEE (2012)Google Scholar
  9. 9.
    Bousdekis, A., Papageorgiou, N., Magoutas, B., Apostolou, D., Mentzas, G.: A real-time architecture for proactive decision making in manufacturing enterprises. In: Ciuciu, I., et al. (eds.) OTM 2015. LNCS, vol. 9416, pp. 137–146. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26138-6_17 CrossRefGoogle Scholar
  10. 10.
    Li, Q., Jiang, H., Tang, Q., Chen, Y., Li, J., Zhou, J.: Smart manufacturing standardization: reference model and standards framework. In: Ciuciu, I., Debruyne, C., Panetto, H., Weichhart, G., Bollen, P., Fensel, A., Vidal, M.-E. (eds.) OTM 2016. LNCS, vol. 10034, pp. 16–25. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55961-2_2 CrossRefGoogle Scholar
  11. 11.
    Muller, A., Marquez, A.C., Iung, B.: On the concept of e-maintenance: review and current research. Reliab. Eng. Syst. Saf. 93(8), 1165–1187 (2008)CrossRefGoogle Scholar
  12. 12.
    Campos, J., Jantunen, E., Prakash, O.: A web and mobile device architecture for mobile e-maintenance. Int. J. Adv. Manuf. Technol. 45(1), 71–80 (2009)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Stefan Schönig
    • 1
    • 2
  • Stefan Jablonski
    • 1
  • Andreas Ermer
    • 2
  • Ana Paula Aires
    • 2
  1. 1.Institute for Computer ScienceUniversity of BayreuthBayreuthGermany
  2. 2.Maxsyma GmbH & Co. KGFloßGermany

Personalised recommendations