Congenital Adrenal Hyperplasia

  • Christine M. Trapp
  • Lenore S. Levine
  • Sharon E. Oberfield
Chapter

Abstract

Congenital adrenal hyperplasia (CAH) is a family of autosomal recessive disorders in which there is a deficiency of one of the enzymes necessary for cortisol synthesis. An abnormality in each of the enzymatic activities required for cortisol synthesis has been described. As a result of the disordered enzymatic step, there is decreased cortisol synthesis, increased ACTH via a negative feedback system, overproduction of the hormones prior to the enzymatic step or not requiring the deficient enzyme, and deficiency of the hormones distal to the disordered enzymatic step. Since several of the enzymatic steps are required for sex hormone synthesis by the gonad, a disordered enzymatic step in the gonad resulting in gonadal steroid hormone deficiency may also be present. This chapter presents an overview of all of the enzymatic deficiencies resulting in CAH with the most extensive review of 21-hydroxylase deficiency which is the most common, first described, and most intensively studied of the enzymatic disorders.

Keywords

Congenital adrenal hyperplasia 21-Hydroxylase deficiency Ambiguous genitalia Nonclassic congenital adrenal hyperplasia Newborn screening Androgen excess Steroidogenesis Maternal treatment 

Notes

Acknowledgment

We acknowledge Dr. Selma Witchel for her thoughtful review and discussion of this chapter. We also thank Hailey Roumimper, ScB for her editorial assistance with manuscript preparation.

References

  1. 1.
    Levine LS. Congenital adrenal hyperplasia. Pediatr Rev. 2000;21:159–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Grumbach MM, Conte FA. Disorders of sex differentiation. In: Wilson JD, editor. Williams textbook of endocrinology. 9th ed. Philadelphia: Saunders; 1998. p. 1361–74.Google Scholar
  3. 3.
    Pang S. Congenital adrenal hyperplasia. Endocrinol Metab Clin N Am. 1997;26:853–91.CrossRefGoogle Scholar
  4. 4.
    Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev. 1998;9:295–318.CrossRefGoogle Scholar
  5. 5.
    White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev. 2000;21:245–91.PubMedGoogle Scholar
  6. 6.
    New MI. Diagnosis and management of congenital adrenal hyperplasia. Annu Rev Med. 1998;49:311–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Bose HS, Sugawara T, Strauss JF III, et al. The pathophysiology and genetics of lipoid adrenal hyperplasia. N Engl J Med. 1996;355:1870–8.CrossRefGoogle Scholar
  8. 8.
    Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol. 2017;165:18–37.PubMedCrossRefGoogle Scholar
  9. 9.
    Miller WL. Androgen biosynthesis from cholesterol to DHEA. Mol Cell Endocrinol. 2002;198(1–2):7–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Jean A, Mansukhani M, Oberfield SE, et al. Prenatal diagnosis of congenital lipoid adrenal hyperplasia (CLAH) by estriol amniotic fluid analysis and molecular genetic testing. Prenat Diagn. 2008;28(1):11–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim CJ. Congenital lipoid adrenal hyperplasia. Ann Pediatr Endocrinol Metab. 2014;19(4):179–83.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Abdulhadi-Atwan M, Jean A, Chung WK, et al. Role of a founder c.201_202delCT mutation and new phenotypic features of congenital lipoid adrenal hyperplasia in Palestinians. J Clin Endocrinol Metab. 2007;92(10):4000–8. [Epub 2007 Jul 31].PubMedCrossRefGoogle Scholar
  13. 13.
    Saenger P, Klonari Z, Black SM, et al. Prenatal diagnosis of congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab. 1995;80:200–5.PubMedGoogle Scholar
  14. 14.
    Bens S, Mohn A, Yüksel B, et al. Congenital lipoid adrenal hyperplasia: functional characterization of three novel mutations in the STAR gene. J Clin Endocrinol Metab. 2010;95(3):1301–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Sahakitrungruang T, Soccio R, Lang-Muritano M, et al. Clinical, genetic, and functional characterization of four patients carrying partial loss-of-function mutations in the steroidogenic acute regulatory protein (StAR). J Clin Endocrinol Metab. 2010;95(7):3352–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tajima T, Fujieda K, Kouda N, et al. Heterozygous mutation in the cholesterol side chain cleavage enzyme (P450scc) gene in a patient with 46, XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab. 2001;86:3820–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Katsumata N, Ohtake M, Hojo T, et al. Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J Clin Endocrinol Metab. 2002;87:3808–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller WL. Congenital lipoid adrenal hyperplasia: the human gene knockout for the steroidogenic acute regulatory protein. J Mol Endocrinol. 1997;19:227–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Fujieda K, Tajima T, Nakae J, et al. Spontaneous puberty in 46,XX subjects with congenital lipoid adrenal hyperplasia. J Clin Invest. 1997;99:1265–71.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bose HS, Sato S, Aisenberg J, et al. Mutations in the steroidogenic acute regulatory protein (StAR) in six patients with congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab. 2000;85:3636–9.PubMedGoogle Scholar
  21. 21.
    Scott RR, Miller WL. Genetic and clinical features of P450 oxidoreductase deficiency. Horm Res. 2008;69:266–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaur J, Casas L, Bose HS. Lipoid congenital adrenal hyperplasia due to STAR mutations in a Caucasian patient. Endocrinol Diabetes Metab Case Rep. 2016;2016:150119. Epub 2016 Mar 2.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Huang Z, Ye J, Han L, Qiu W, Zhang H, Yu Y, Liang L, Gong Z, Gu X. Identification of five novel STAR variants in ten Chinese patients with congenital lipoid adrenal hyperplasia. Steroids. 2016;108:85–91. Epub 2016 Jan 28.PubMedCrossRefGoogle Scholar
  24. 24.
    Baquedano MS, Guercio G, Marino R, Berensztein E, Costanzo M, Ramirez P, Bailez M, Vaiani E, Maceiras M, Rivarola MA, Belgorosky A. Novel heterozygous mutation in the steroidogenic acute regulatory protein gene in a 46,XY patient with congenital lipoid adrenal hyperplasia. Medicina (B Aires). 2013;73(4):297–302.Google Scholar
  25. 25.
    Yuksel B, Kulle AE, Gurbuz F, Welzel M, Kotan D, Mengen E, Holterhus PM, Topaloglu AK, Grotzinger J, Riepe FG. The novel mutation p.Trp147Arg of the steroidogenic acute regulatory protein causes classic lipoid congenital adrenal hyperplasia with adrenal insufficiency and 46, XY disorder of sex development. Horm Res Paediatr. 2013;80:163–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev. 2005;26(4):525–82. [Epub 2005 Jan 4].PubMedCrossRefGoogle Scholar
  27. 27.
    Benkert AR, Young M, Robinson D, Hendrickson C, Lee PA, Strauss KA. Severe salt-losing 3β-hydroxysteroid deydrogenase deficiency: treatment and outcomes of HSD3B2 c.35G>A homozygotes. J Clin Endocrinol Metab. 2015;100:E1105–15.CrossRefGoogle Scholar
  28. 28.
    Simard J, Moisan AM, Morel Y. Congenital adrenal hyperplasia due to 3β(beta)-hydroxysteroid dehydrogenase/Δ(delta)5-Δ(delta)4 isomerase deficiency. Semin Reprod Med. 2002;20(3):255–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Simard J, Rhéaume E, Sanchez R, et al. Molecular basis of congenital adrenal hyperplasia due to 3β(beta)-hydroxysteroid deficiency. Mol Endocrinol. 1993;7:716–28.PubMedGoogle Scholar
  30. 30.
    Mason JI. The 3β(beta)-hydroxysteroid dehydrogenase gene family of enzymes. Trends Endocrinol Metab. 1993;6:199.CrossRefGoogle Scholar
  31. 31.
    Chang YT, Zhang L, Alkaddour HS, et al. Absence of molecular defect in the Type II 3β(beta)-hydroxysteroid dehydrogenase (3β(beta)-HSD) gene in premature pubarche children and hirsute female patients with moderately decreased adrenal 3β(beta)-HSD activity. Pediatr Res. 1995;37:820–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Pang S. Genetics of 3β(beta)-hydroxysteroid dehydrogenase deficiency disorder. Growth Genet Horm. 1996;12:5–9.Google Scholar
  33. 33.
    Moisan AM, Ricketts ML, Tardy V, et al. New insight into the molecular basis of 3β(beta)-hydroxysteroid dehydrogenase deficiency: identification of eight mutations in the HSD3B2 gene in eleven patients from seven new families and comparison of the functional properties of twenty-five mutant enzymes. J Clin Endocrinol Metab. 1999;84:4410–25.PubMedGoogle Scholar
  34. 34.
    Marui S, Castro M, Latronico AC, et al. Mutations in the type II 3β(beta)-hydroxysteroid dehydrogenase (HSD3B2) gene can cause premature pubarche in girls. Clin Endocrinol. 2000;52:67–75.CrossRefGoogle Scholar
  35. 35.
    Grumbach MM, Hughes IA, Conte FA. Disorders of sex differentiation. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, editors. Williams textbook of endocrinology. 10th ed. Philadelphia: Saunders; 2003. p. 842–1002.Google Scholar
  36. 36.
    Kater CE, Biglieri EG. Disorders of steroid 17 alpha-hydroxylase deficiency. Endocrinol Metab Clin N Am. 1994;23(2):341–57.Google Scholar
  37. 37.
    Wolthers OD, Rumsby G, Techatraisak K, et al. 17-Hydroxylase/17,20 lyase deficiency diagnosed during childhood. Horm Res. 2002;57(3–4):133–6.PubMedGoogle Scholar
  38. 38.
    Marsh CA, Auchus RJ. Fertility in patients with genetic deficiencies of cytochrome P450c17 (CYP17A1): combined 17-hydroxylase/17,20-lyase deficiency and isolated 17,200lyase deficiency. Fertil Steril. 2014;101(2):317–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Yanase T, Simpson ER, Waterman MR. 17Alpha-hydroxylase/17,20-lyase deficiency: from clinical investigation to molecular definition. Endocr Rev. 1991;12:91–108.PubMedCrossRefGoogle Scholar
  40. 40.
    Zachmann M. Prismatic cases: 17,10-desmolase (17,20-lyase) deficiency. Clin Endocrinol. 1996;81:457–9.Google Scholar
  41. 41.
    Geller DH, Auchus RJ, Mendonca BB, et al. The genetic and functional basis of isolated 17,20-lyase deficiency. Nat Genet. 1997;17:201–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Turan S, Bereket A, Guran T, et al. Puberty in a case with novel 17-hydroxylase mutation and the putative role of estrogen in development of pubic hair. Eur J Endocrinol. 2009;160(2):325–30. [Epub 2008 Nov 7].PubMedCrossRefGoogle Scholar
  43. 43.
    Müssig K, Kaltenbach S, Machicao F, et al. 17Alpha-hydroxylase/17,20-lyase deficiency caused by a novel homozygous mutation (Y27Stop) in the cytochrome CYP17 gene. J Clin Endocrinol Metab. 2005;90(7):4362–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Patocs A, Liko I, Varga I, et al. Novel mutation of the CYP17 gene in two unrelated patients with combined 17alpha-hydroxylase/17,20-lyase deficiency: demonstration of absent enzyme activity by expressing the mutant CYP17 gene and by three-dimensional modeling. J Steroid Biochem Mol Biol. 2005;97(3):257–65. [Epub 2005 Sep 19].PubMedCrossRefGoogle Scholar
  45. 45.
    Turkkahraman D, Guran T, Ivison H, Griffin A, Vijzelaar R, Krone N. Identification of a novel large CYP17A1 deletion by MLPA analysis in a family with classic 17α-hydroxylase deficiency. Sex Dev. 2015;9(2):91–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim YM, Kang M, Choi JH, Lee BH, Kim GH, Ohn JH, Kim SY, Park MS, Yoo HW. A review of the literature on common CYP17A1 mutations in adults with 17-hydroxylase/17,20-lyase deficiency, a case series of such mutations among Koreans and functional characteristics of a novel mutation. Metabolism. 2014;63(1):42–9. Epub 2013 Oct 18.PubMedCrossRefGoogle Scholar
  47. 47.
    Trakakis E, Basios G, Trompoukis P, Labos G, Grammatikakis I, Kassanos D. An update to 21-hydroxylase deficient congenital adrenal hyperplasia. Gynecol Endocrinol. 2010;26(1):63–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Speiser PW, Dupont B, Rubinstein P, et al. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet. 1985;37:650–67.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Armengaud JB, Charkaluk ML, Trivin C, et al. Precocious pubarche: distinguishing late-onset congenital adrenal hyperplasia from premature adrenarche. J Clin Endocrinol Metab. 2009;94:2835–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Witchel SF, Azziz R. Congenital adrenal hyperplasia. J Pediatr Adolesc Gynecol. 2011;24(3):116–26.PubMedCrossRefGoogle Scholar
  51. 51.
    Choi JH, Kim GH, Yoo HW. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Ann Pediatr Endocrinol Metab. 2016;21(1):1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Concolino P, Mello E, Toscano V, Ameglio F, Zuppi C, Capoluongo E. Multiplex ligation-dependent probe amplification (MLPA) assay for the detection of CYP21A2 gene deletions/duplications in congenital adrenal hyperplasia: first technical report. Clin Chim Acta. 2009;402:164–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Reisch N, Hogler W, Parajes S, Rose IT, Dhir V, Gotzinger J, Arlt W, Krone N. A diagnosis not to be missed: nonclassic steroid 11β-hydroxylase deficiency presenting with premature adrenarche and hirsutism. J Clin Endocrinol Metab. 2013;98(10):E1620–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Krone N, Arlt W. Genetics of congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab. 2009;23(2):181–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Chabraoui L, Abid F, Menassa R, et al. Three novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11beta-hydroxylase deficiency in a Moroccan population. Horm Res Paediatr. 2010;74:182–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Krone N, Grischuk Y, Müller M, et al. Analyzing the functional and structural consequences of two point mutations (P48L and A368D) in the CYP11B1 gene causing congenital adrenal hyperplasia resulting from 11-hydroxylase deficiency. J Clin Endocrinol Metab. 2006;91(7):2682–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Parajes S, Loidi L, Reisch N, et al. Functional consequences of seven novel mutations in the CYP11B1 gene: four mutations associated with nonclassic and three mutations causing classic 11β(beta)-hydroxylase deficiency. J Clin Endocrinol Metab. 2010;95(2):779–88.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Krone N, Grötzinger J, Holterhus PM, et al. Congenital adrenal hyperplasia due to 11-hydroxylase deficiency-insights from two novel CYP11B1 mutations (p.M92X, p.R453Q). Horm Res. 2009;72:281–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Zheng-qin Y, Man-na Z, Hui-jie Z, et al. A novel missense mutation, GGC(Arg454) → TGC(Cys), of CYP11B1 gene identified in a Chinese family with steroid 11β(beta)-hydroxylase deficiency. Chin Med J. 2010;123(10):1264–8.Google Scholar
  60. 60.
    Kandemir N, Yilmaz DY, Gonc EN, Ozon A, Alikasifoglu A, Dursun A, Ozgul RK. Novel and prevalent CYP11B1 gene mutations in Turkish patients with 11-β hydroxylase deficiency. J Steroid Biochem Mol Biol. 2017;165:57–63.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang X, Nie M, Lu L, Tong A, Chen S, Lu Z. Identification of several novel CYP11B1 gene mutations in Chinese patients with 11β hydroxylase deficiency. Steroids. 2015;100:11–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Dumic K, Yuen T, Grubic Z, Kusec V, Barisic I, New MI. Two novel CYP11B1 gene mutations in patients from two Croatian families with 11β hydroxylase deficiency. Int J Endocrinol. 2014;2014:185974. Epub 2014 Jun 2.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Polat S, Kulle A, Karaca Z, Akkurt I, Kurtoglu S, Kelestimur F, Grotzinger J, Holterhus PM, Riepe FG. Characterisation of three novel CYP11B1 mutations in classic and non-classic 11β-hydroxylase deficiency. Eur J Endocrinol. 2014;170(5):697–706. Print 2014 May.PubMedCrossRefGoogle Scholar
  64. 64.
    Geley S, Kapelari K, Jöhrer K, et al. CYP11B1 mutations causing congenital adrenal hyperplasia due to 11β(beta)-hydroxylase deficiency. J Clin Endocrinol Metab. 1996;81:2896–901.PubMedGoogle Scholar
  65. 65.
    White PC, Curnow KC, Pascoe L. Disorders of steroid 11β(beta)-hydroxylase isozymes. Endocr Rev. 1994;15:421–38.PubMedGoogle Scholar
  66. 66.
    Merke DP, Tajima T, Chhabra A, et al. Novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11β(beta)-hydroxylase deficiency. J Clin Endocrinol Metab. 1998;83:270–3.PubMedGoogle Scholar
  67. 67.
    Zachmann M, Tassinari D, Prader A. Clinical and biochemical variability of congenital adrenal hyperplasia due to 11β(beta)-hydroxylase deficiency: a study of 25 patients. J Clin Endocrinol Metab. 1983;56:222–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Peterson RE, Imperato-McGinley J, Gautier T, Shackleton C. Male pseudohermaphroditism due to multiple defects in steroid-biosynthetic microsomal mixed-function oxidases: a new variant of congenital adrenal hyperplasia. N Engl J Med. 1985;313:1182–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Flück CE, Tajima T, Pandey AV, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet. 2004;36:228–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Arlt W, Walker EA, Draper N, et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet. 2004;363:2128–35.PubMedCrossRefGoogle Scholar
  71. 71.
    Adachi M, Tachibana K, Asakura Y, et al. Compound heterozygous mutations of cytochrome P450 oxidoreductase gene (POR) in two patients with Antley-Bixler syndrome. Am J Med Genet A. 2004;128:333–9.CrossRefGoogle Scholar
  72. 72.
    Miller WL. P450 oxidoreductase deficiency: a new disorder of steroidogenesis with multiple clinical manifestations. Trends Endocrinol Metab. 2004;15:311–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Burkhard FZ, Parween S, Udhane SS, Fluck CE, Pandey AV. P450 Oxidoreductase deficiency: analysis of mutations and polymorphisms. J Steroid Biochem Mol Biol. 2017;165:38–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Miller WL, Huang N, Agrawal V, Giacomini KM. Genetic variation in human P450 oxidoreductase. Mol Cell Endocrinol. 2009;300(1–2):180–4. [Epub 2008 Sep 26, Review].PubMedCrossRefGoogle Scholar
  75. 75.
    Fukami M, Nishimura G, Homma K, et al. Cytochrome P450 oxidoreductase deficiency: identification and characterization of biallelic mutations and genotype-phenotype correlations in 35 Japanese patients. J Clin Endocrinol Metab. 2009;94(5):1723–31.PubMedCrossRefGoogle Scholar
  76. 76.
    Antley R, Bixler D. Trapezoidocephaly, midfacial hypoplasia and cartilage abnormalities with multiple synostoses and skeletal fractures. Birth Defects Orig Artic Ser. 1975;11:397–401.PubMedGoogle Scholar
  77. 77.
    Reardon W, Smith A, Honour JW, Hindmarsh P, Das D, Rumsby G, Nelson I, Malcolm S, Ades L, Sillence D, Kumar D, DeLoizier-Blanchet C, McKee S, Kelly T, McKeehan WL, Baraitser M, Winter RM. Evidence for digenic inheritance in some cases of Antley-Bixler syndrome? J Med Genet. 2000;37:26–32.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Crisponi G, Porcu C, Piu ME. Antley-Bixler syndrome: case report and review of the literature. Clin Dysmorphol. 1997;6:61–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Huang N, Pandey AV, Agrawal V, et al. Diversity and function of mutations in P450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Am J Hum Genet. 2005;76:729–49.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Miller WL, Agrawal V, Sandee D, Tee MK, Huang N, Choi JH, Morrissey K, Giocomini KM. Consequences of POR mutations and polymorphisms. Mol Cell Endocrinol. 2011;336(1–2):174–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Flück CE, Pandey AV, Huang N, et al. P450 oxidoreductase deficiency—a new form of congenital adrenal hyperplasia. Endocr Dev. 2008;13:67–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Sahakitrungruang T, Huang N, Tee MK, et al. Clinical, genetic, and enzymatic characterization of P450 oxidoreductase deficiency in four patients. J Clin Endocrinol Metab. 2009;94(12):4992–5000.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Speiser PW, Azziz R, Baskin LS, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(9):4133–60.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Webb EA, Krone N. Current and novel approaches to children and young people with adrenal hyperplasia and adrenal insufficiency. Best Pract Res Clin Endocrinol Metab. 2015;29(3):449–68.PubMedCrossRefGoogle Scholar
  85. 85.
    Johannsson G, Skrtic S, Lennernas H, Quinkler M, Stewart PM. Improving outcomes in patients with adrenal insufficiency: a review of current and future treatments. Curr Med Res Opin. 2014;30(9):1833–47.PubMedCrossRefGoogle Scholar
  86. 86.
    Merke DP, Poppas DP. Management of adolescents with congenital adrenal hyperplasia. Lancet Diabetes Endocrinol. 2013;1(4):341–52.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rivkees SA, Crawford JD. Dexamethasone treatment of virilizing congenital adrenal hyperplasia: the ability to achieve normal growth. Pediatrics. 2000;106:767–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Punthakee Z, Legault L, Polychronakos C. Prednisolone in the treatment of adrenal insufficiency: a re-evaluation of relative potency. J Pediatr. 2003;143:402–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Bonfig W, Schwarz HP. Blood pressure, fludrocortisone dose and plasma renin activity in children with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency followed from birth to 4 years of age. Clin Endocrinol. 2014;81(6):871–5.CrossRefGoogle Scholar
  90. 90.
    Schober JM. Feminizing genitoplasty for intersex. In: Stringer MD, Oldham KT, Moriquand PDE, Howard BR, editors. Pediatric surgery and urology: long term outcomes. Philadelphia: Saunders; 1998. p. 549–58.Google Scholar
  91. 91.
    Meyer-Bahlburg HFL. What causes low rates of child-bearing in congenital adrenal hyperplasia? J Clin Endocrinol Metab. 1999;84:1844–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Alizai NK, Thomas DFM, Lilford TRJ, et al. Feminizing genitoplasty for congenital adrenal hyperplasia: what happens at puberty? J Urol. 1999;161:1588–91.PubMedCrossRefGoogle Scholar
  93. 93.
    Krege S, Walz KH, Hauffa BP, et al. Long-term follow-up of female patients with congenital adrenal hyperplasia from 21-hydroxylase deficiency, with special emphasis on the results of vaginoplasty. BJU Int. 2000;86:253–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Mouriguand PD, Gorduza DB, Gay CL, Meyer-Bahlburg HF, Baker L, Baskin LS, Bouvattier C, Braga LH, Caldamone AC, Duranteau L, El Ghoneimi A, Hensle TW, Hoebeke P, Kaefer M, Kalfa N, Kolon TF, Manzoni G, Mure PY, Nordenskjold A, Pippi Salle JL, Poppas DP, Ransley PG, Rink RC, Rodrigo R, Sann L, Schober J, Sibai H, Wisniewski A, Wolffenbuttel KP, Lee P. Surgery in disorders of sex development (DSD) with a gender issue: if (why), when, and how? J Pediatr Urol. 2016;12(3):139–49.CrossRefGoogle Scholar
  95. 95.
    Soliman AT, AlLamki M, AlSalmi I, et al. Congenital adrenal hyperplasia complicated by central precocious puberty: linear growth during infancy and treatment with gonadotropin-releasing hormone analog. Metabolism. 1997;46:513–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Guven A, Nurcan Cebeci A, Hancili S. Gonadotropin releasing hormone analog treatment in children with congenital adrenal hyperplasia complicated by precocious puberty. Hormones (Athens). 2015;14(2):265–71.Google Scholar
  97. 97.
    Laue L, Merke DP, Jones JV, et al. A preliminary study of flutamide, testolactone, and reduced hydrocortisone dose in the treatment of congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1996;81:3535–9.PubMedGoogle Scholar
  98. 98.
    Merke DP, Keil MF, Jones JV, et al. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2000;85:1114–20.PubMedCrossRefGoogle Scholar
  99. 99.
    Juan L, Huamei M, Zhe S, Yanhong L, Hongshan C, Qiuli C, Jun Z, Song G, Minlian D. Near-final health in 82 Chinese patients with congenital adrenal hyperplasia due to classic 21-hydroxylase deficiency: a single-center study from China. J Pediatr Endocrinol Metab. 2016;29(7):841–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Alvi S, Shaw NJ, Rayner PHW, et al. Growth hormone and goserelin in congenital adrenal hyperplasia. Horm Res. 1997;48(Suppl 2):1–201.Google Scholar
  101. 101.
    Quintos JB, Vogiatzi MG, Harbison MD, et al. Growth hormone and depot leuprolide therapy for short stature in children with congenital adrenal hyperplasia. Annual Meeting Endocrine Society; 1999. [Program and Abstracts: 110].Google Scholar
  102. 102.
    Longui CA, Kochi C, Calliari LE, Modkovski MB, Soares M, Alves EF, Prudente FV, Monte O. Near-final height in patients with congenital adrenal hyperplasia treated with combined therapy using GH and GnRHa. Arg Bras Endocrinol Metab. 2011;55(8):661–4.CrossRefGoogle Scholar
  103. 103.
    Lin-Su K, Harbison MD, Lekarev O, Vogiatzi MG, New MI. Final adult height in children with congenital adrenal hyperplasia treated with growth hormone. J Clin Endocrinol Metab. 2011;96(6):1710–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Quintos JB, Vogiatzi MG, Harbison MD, New MI. Growth hormone therapy alone or in combination with gonadotropin-releasing hormone analog therapy to improve the height deficit in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2001;86:1511–7.PubMedGoogle Scholar
  105. 105.
    Gallagher MP, Levine LS, Oberfield SE. A review of the effects of therapy on growth and bone mineralization in children with congenital adrenal hyperplasia. Growth Hormon IGF Res. 2005;15(Suppl A):26–30.CrossRefGoogle Scholar
  106. 106.
    Van Wyk JJ, Gunther DF, Ritzen EM, et al. Therapeutic controversies: the use of adrenalectomy as a treatment for congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1996;81:3180–90.PubMedGoogle Scholar
  107. 107.
    Gunther DF, Bukowski TP, Titzen EM, et al. Prophylactic adrenalectomy of a three-year-old girl with congenital adrenal hyperplasia: pre- and postoperative studies. J Clin Endocrinol Metab. 1997;82:3324–7.PubMedGoogle Scholar
  108. 108.
    Nasir J, Royston C, Walton C, et al. 11β(beta)-hydroxylase deficiency: management of a difficult case by laparoscopic bilateral adrenalectomy. Clin Endocrinol. 1996;45:225–8.CrossRefGoogle Scholar
  109. 109.
    Chabre O, Portrat-Doyen S, Chaffanjon P, et al. Bilateral laparoscopic adrenalectomy for congenital adrenal hyperplasia with severe hypertension, resulting from two novel mutations in splice donor sites of CYP11B1. J Clin Endocrinol Metab. 2000;85:4060–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Wudy SA, Choi MH. Steroid LC-MS has come of age. J Steroid Biochem Mol Biol. 2016;162:1–3.PubMedCrossRefGoogle Scholar
  111. 111.
    Lo JC, Schwitzgebel VM, Tyrrell JB, et al. Normal female infants born of mothers with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1999;84:930–6.PubMedGoogle Scholar
  112. 112.
    Lim YJ, Batch JA, Warne GL. Adrenal 21-hydroxylase deficiency in childhood: 25 years’ experience. J Paediatr Child Health. 1995;31:222–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Rasat R, Espiner EA, Abbott GD. Growth patterns and outcomes in congenital adrenal hyperplasia: effects of chronic treatment regimens. N Z Med J. 1995;108:311–4.PubMedGoogle Scholar
  114. 114.
    Yu AC, Grant DB. Adult height in women with early-treated congenital adrenal hyperplasia (21-hydroxylase type): relation to body mass index in earlier childhood. Acta Paediatr. 1995;84:899–903.PubMedCrossRefGoogle Scholar
  115. 115.
    Hauffa BP, Winter A, Stolecke H. Treatment and disease effects on short-term growth and adult height in children and adolescents with 21-hydroxylase deficiency. Klin Padiatr. 1997;209:71–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Jaaskelainen J, Voutilainen R. Growth of patients with 21-hydroxylase deficiency: an analysis of the factors influencing adult height. Pediatr Res. 1997;41:30–3.PubMedCrossRefGoogle Scholar
  117. 117.
    Kandemir N, Yordam N. Congenital adrenal hyperplasia in Turkey: a review of 273 patients. Acta Paediatr. 1997;86:22–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Kuhnle U, Bullinger M. Outcome of congenital adrenal hyperplasia. Pediatr Surg Int. 1997;12:511–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Premawardhana LDKE, Hughes IA, Read GH, et al. Longer term outcome in females with congenital adrenal hyperplasia (CAH): the Cardiff experience. Clin Endocrinol. 1997;46:327–32.CrossRefGoogle Scholar
  120. 120.
    Eugster EA, DiMeglio LA, Wright JC, et al. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: a meta-analysis. J Pediatr. 2001;138:26–32.PubMedCrossRefGoogle Scholar
  121. 121.
    Schwartz RP. Back to basics: early diagnosis and compliance improve final height outcome in congenital adrenal hyperplasia. J Pediatr. 2001;138:3–5.PubMedCrossRefGoogle Scholar
  122. 122.
    Diamond M. Prenatal predisposition and the clinical management of some pediatric conditions. J Sex Marital Ther. 1996;22:139.PubMedCrossRefGoogle Scholar
  123. 123.
    Diamond M, Sigmundson HK. Sex reassignment at birth. Arch Pediatr Adolesc. 1997;151:298.CrossRefGoogle Scholar
  124. 124.
    Silveira MT, Knobloch F, Silva Janovsky CC, Kater CE. Gender dysphoria in a 62-year-old genetic female with congenital adrenal hyperplasia. Arch Sex Behav. 2016;45(7):1871–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Furtado PS, Moraes F, Lago R, Barros LO, Toralles MB, Barroso U Jr. Gender dysphoria associated with disorders of sex development. Nat Rev Urol. 2012;9(11):620–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Hagenfeldt K, Ritzen EM, Ringertz H, et al. Bone mass and body composition of adult women with congenital virilizing 21-hydroxylase deficiency after glucocorticoid treatment since infancy. Eur J Endocrinol. 2000;143:667–71.PubMedCrossRefGoogle Scholar
  127. 127.
    Schulz J, Frey KR, Cooper MS, Zopf K, Ventz M, Diederich S, Quinkler M. Reduction in daily hydrocortisone dose improves bone health in primary adrenal insufficiency. Eur J Endocrinol. 2016;174(4):531–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Nimkarn S, New MI. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: a paradigm for prenatal diagnosis and treatment. Ann N Y Acad Sci. 2010;1192:5–11.PubMedCrossRefGoogle Scholar
  129. 129.
    New MI, Abraham M, Yuen T, Lekarev O. An update on prenatal diagnosis and treatment of congenital adrenal hyperplasia. Semin Reprod Med. 2012;30(5):396–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Tardy-Guidollet V, Menassa R, Costa JM, David M, Bouvattier-Morel C, Baumann C, Houang M, Lorenzini F, Philip N, Odent S, Guichet A, Morel Y. New management strategy of pregnancies at risk of congenital adrenal hyperplasia using fetal sex determination in maternal serum: French cohort of 258 cases (2002–2011). J Clin Endocrinol Metab. 2014;99(4):1180–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, Wainscoat JS, Johnson PJ, Chang AM, Hjelm NM. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768–75.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Chiu RW, Lau TK, Cheung PT, Gong ZQ, Leung TN, Lo YM. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasible study. Clin Chem. 2002;48(5):778–80.PubMedGoogle Scholar
  133. 133.
    New MI, Tong YK, Yuen T, Jiang P, Pina C, Chan KC, Khattab A, Liao GJ, Yau M, Kim SM, Chiu RW, Sun L, Zaidi M, Lo YM. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99(6):E1022–30.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Yau M, Khattab A, New MI. Prenatal diagnosis of congenital adrenal hyperplasia. Endocrinol Metab Clin N Am. 2016;45(2):267–81.CrossRefGoogle Scholar
  135. 135.
    Forest MG, Morel Y, David M. Prenatal treatment of congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. Front Endocrinol. 1996;17:77–89.Google Scholar
  136. 136.
    Carlson AD, Obeid JS, Kanellopoulou N, et al. Congenital adrenal hyperplasia: update on prenatal diagnosis and treatment. J Steroid Biochem Mol Biol. 1999;69:19–29.PubMedCrossRefGoogle Scholar
  137. 137.
    Rosler A, Weshler N, Leiberman E, et al. 11β(Beta)-hydroxylase deficiency congenital adrenal hyperplasia: update of prenatal diagnosis. J Clin Endocrinol Metab. 1988;66:830–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Cerame BI, Newfield RS, Pascoe L, et al. Prenatal diagnosis and treatment of 11β(beta)-hydroxylase deficiency congenital adrenal hyperplasia resulting in normal female genitalia. J Clin Endocrinol Metab. 1999;84:3129–34.PubMedGoogle Scholar
  139. 139.
    Izumi H, Saito N, Ichiki S, et al. Prenatal diagnosis of congenital lipoid adrenal hyperplasia. Obstet Gynecol. 1993;81:839–41.PubMedGoogle Scholar
  140. 140.
    Saenger P. New developments in congenital lipoid adrenal hyperplasia and steroidogenic acute regulatory protein. Pediatr Clin N Am. 1997;44:397–421.CrossRefGoogle Scholar
  141. 141.
    David M, Forest MG. Prenatal treatment of congenital adrenal hyperplasia resulting from 21-hydroxylase deficiency. J Pediatr. 1984;105:799–803.PubMedCrossRefGoogle Scholar
  142. 142.
    White PC, Mune T, Agarwal AK. 11β(beta)-hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev. 1997;18:135–56.PubMedGoogle Scholar
  143. 143.
    New MI, Carlson A, Obeid J, et al. Prenatal diagnosis for congenital adrenal hyperplasia in 532 pregnancies. J Clin Endocrinol Metab. 2001;86:5651–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Levine LS, Pang S. Prenatal diagnosis and treatment of congenital adrenal hyperplasia. In: Milunsky A, editor. Genetic disorders and the fetus: diagnosis, prevention and treatment. 4th ed. Baltimore: The Johns Hopkins University Press; 1998. p. 529–49.Google Scholar
  145. 145.
    Pang S, Clark AT, Freeman LC, et al. Maternal side effects of prenatal dexamethasone therapy for fetal congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1992;75:249–53.PubMedGoogle Scholar
  146. 146.
    Forest MG, Dorr HG. Prenatal treatment of congenital adrenal hyperplasia resulting from 21-hydroxylase deficiency: European experience in 253 pregnancies at risk. Clin Cour. 1993;11:2–3.Google Scholar
  147. 147.
    Lajic S, Wedell A, Bui T, et al. Long-term somatic follow-up of prenatally treated children with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1998;83:3872–80.PubMedGoogle Scholar
  148. 148.
    Trautman PD, Meyer-Bahlburg HFL, Postelnek J, et al. Effects of early prenatal dexamethasone on the cognitive and behavioral development of young children: results of a pilot study. Psychoneuroendocrinology. 1995;20:439–49.PubMedCrossRefGoogle Scholar
  149. 149.
    Meyer-Bahlburg HF, Dolezal C, Baker SW, et al. Cognitive and motor development of children with and without congenital adrenal hyperplasia after early-prenatal dexamethasone. J Clin Endocrinol Metab. 2004;89:610–4.PubMedCrossRefGoogle Scholar
  150. 150.
    Hirvikoski T, Nordenström A, Lindholm T, et al. Long-term follow-up of prenatally treated children at risk for congenital adrenal hyperplasia: does dexamethasone cause behavioral problems? Eur J Endocrinol. 2008;159:309–16.PubMedCrossRefGoogle Scholar
  151. 151.
    Hirvikoski T, Nordenström A, Lindholm T, et al. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J Clin Endocrinol Metab. 2007;92:542–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Wallensteen L, Zimmermann M, Thomsen Sandberg M, Gezelius A, Nordenstrom A, Hirvikoski T, Lajic S. Sex-dimorphic effects of prenatal treatment with dexamethasone. J Clin Endocrinol Metab. 2016;101(10):3838–46.PubMedCrossRefGoogle Scholar
  153. 153.
    Meyer-Bahlburg HF, Dolezal C, Haggerty R, Silverman M, New MI. Cognitive outcome of offspring from dexamethasone-treated pregnancies at risk for congenital adrenal hyperplasia due to 21-hydroxylate deficiency. Eur J Endocrinol. 2012;167(1):103–10.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Forest MG, Morel Y, David M. Prenatal treatment of congenital adrenal hyperplasia. Trends Endocrinol Metab. 1998;9:284–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Trautman PD, Meyer-Bahlburg HF, Postelnek J, et al. Mothers’ reactions to prenatal diagnostic procedures and dexamethasone treatment of congenital adrenal hyperplasia. J Psychosom Obstet Gynaecol. 1996;17:175–81.PubMedCrossRefGoogle Scholar
  156. 156.
    Hirvikoski T, Nordenstrom A, Wedell A, Ritzen M, Lajic S. Prenatal dexamethasone treatment of children at risk for congenital adrenal hyperplasia: the Swedish experience and standpoint. J Clin Endocrinol Metab. 2012;97(6):1881–3.PubMedCrossRefGoogle Scholar
  157. 157.
    Miller WL, Witchel SF. Prenatal treatment of congenital adrenal hyperplasia: risks outweigh benefits. Am J Obstet Gynecol. 2013;208(5):354–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Miller WL. Fetal endocrine therapy for congenital adrenal hyperplasia should not be done. Best Pract Res Clin Endocrinol Metab. 2015;29(3):469–83.PubMedCrossRefGoogle Scholar
  159. 159.
    Miller WL. Prenatal treatment of congenital adrenal hyperplasia: a promising experimental therapy of unproven safety. Trends Endocrinol Metab. 1998;9:290–3.PubMedCrossRefGoogle Scholar
  160. 160.
    Pang S, Hotchkiss J, Drash AL, et al. Microfilter paper method for 17α(alpha)-hydroxyprogesterone radioimmunoassay; its application for rapid screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1977;45:1003–8.PubMedCrossRefGoogle Scholar
  161. 161.
    Pang S, Murphey W, Levine LS, et al. A pilot newborn screening for congenital adrenal hyperplasia in Alaska. J Clin Endocrinol Metab. 1982;55:413–20.PubMedCrossRefGoogle Scholar
  162. 162.
    Pang S, Wallace MA, Hofman L, et al. Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics. 1988;81:866–74.PubMedGoogle Scholar
  163. 163.
    Pang S, Clark A. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: newborn screening and its relationship to the diagnosis and treatment of the disorder. Screening. 1993;2:105–39.CrossRefGoogle Scholar
  164. 164.
    Balsamo A, Cacciari E, Piazzi S, et al. Congenital adrenal hyperplasia: neonatal mass screening compared with clinical diagnosis only in the Emilia-Romagna region of Italy. Pediatrics. 1996;98:362–7.PubMedGoogle Scholar
  165. 165.
    Cutfield WS, Webster D. Newborn screening for congenital adrenal hyperplasia in New Zealand. J Pediatr. 1995;126:118–21.PubMedCrossRefGoogle Scholar
  166. 166.
    Dotti G, Pagliardini S, Vuolo A, et al. Congenital adrenal hyperplasia in the experience of the Piemonte and Valle d’Aosta regions program (1987–1995). In: Programs & abstracts of the 3rd international newborn screening meeting, Boston, 22–23 Oct 1996 [Abstract No. P-82].Google Scholar
  167. 167.
    Nordenström A, Thilén A, Hagenfeldt L, et al. Benefits of screening for congenital adrenal hyperplasia (CAH) in Sweden. In: Levy HL, Hermos RJ, Grady GF, editors. Proceedings, third meeting of the international society for neonatal screening, Boston, 22–23 Oct 1996. p. 211–216.Google Scholar
  168. 168.
    Sack J, Front H, Kaiserman I, et al. Screening for 21-hydroxylase deficiency in Israel. In: Programs & abstracts of the 3rd international newborn screening meeting, Boston, 22–23 Oct 1996 [Abstract No. P-87].Google Scholar
  169. 169.
    Al-Nuaim AA. Newborn screening program (NSP) in Saudi Arabia (SA). In: Programs & abstracts of the 3rd international newborn screening meeting, Boston 22–23 Oct 1996 [Abstract No. P-90].Google Scholar
  170. 170.
    Pang S, Shook M. Current status of newborn screening for congenital adrenal hyperplasia. Curr Opin Pediatr. 1997;9:419–23.PubMedCrossRefGoogle Scholar
  171. 171.
    Tajima T, Fujieda K, Nakae J, et al. Molecular basis of nonclassical steroid 21-hydroxylase deficiency detected by neonatal mass screening in Japan. J Clin Endocrinol Metab. 1997;82:2350–6.PubMedCrossRefGoogle Scholar
  172. 172.
    Herrel BL Jr, Berenbaum SA, Manter-Kapanke V, et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics. 1998;101:583–90.CrossRefGoogle Scholar
  173. 173.
    Allen DB, Hoffman GL, Mahy SL, et al. Improved precision of newborn screening for congenital adrenal hyperplasia using weight adjusted criteria for 17-hydroxyprogesterone levels. J Pediatr. 1997;130:120–33.CrossRefGoogle Scholar
  174. 174.
    Brosnan PG, Brosnan CA, Kemp SF, et al. Effect of newborn screening for congenital adrenal hyperplasia. Arch Pediatr Adolesc Med. 1999;153:1272–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Kwon C, Farrell PM. The magnitude and challenge of false-positive newborn screening test results. Arch Pediatr Adolesc Med. 2000;154:714–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Matern D, Tortorelli S, Oglesbee D, et al. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004–2007). J Inherit Metab Dis. 2007;30:585–92.PubMedCrossRefGoogle Scholar
  177. 177.
    Lacey JM, Minutti CZ, Magera MJ, et al. Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin Chem. 2004;50:621–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Rauh M, Gröschl M, Rascher W, Dorr HG. Automated, fast and sensitive quantification of 17α(alpha)-hydroxy-progesterone, androstenedione and testosterone by tandem mass spectrometry with on-line extraction. Steroids. 2006;71:450–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Janzen N, Sander S, Terhardt M, et al. Fast and direct quantification of adrenal steroids by tandem mass spectrometry in serum and dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;861:117–22.PubMedCrossRefGoogle Scholar
  180. 180.
    Boelen A, Ruiter AF, Classhsen-van der Grinten HL, Endert E, Ackermans MT. Determination of a steroid profile in heel prick blood using LC-MS/MS. Bioanalysis. 2016;8(5):375–84.PubMedCrossRefGoogle Scholar
  181. 181.
    Tajima T, Fukushi M. Neonatal mass screening for 21-hydroxylase deficiency. Clin Pediatr Endocrinol. 2016;25(1):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Monostori P, Szabo P, Marginean O, Bereczki C, Karg E. Concurrent confirmation and differential diagnosis of congenital adrenal hyperplasia from dried blood spots: application of a second-tier LC-MS/MS assay in a cross-border cooperation for newborn screening. Horm Res Paediatr. 2015;84(5):311–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Seo JY, Park HD, Kim JW, Oh HJ, Yang JS, Chang YS, Park WS, Lee SY. Steroid profiling for congenital adrenal hyperplasia by tandem mass spectrometry as a second-tier test reduces follow-up burdens in a tertiary care hospital: a retrospective and prospective evaluation. J Perinat Med. 2014;42(1):121–7.PubMedCrossRefGoogle Scholar
  184. 184.
    Miller WL, Levine LS. Molecular and clinical advancements in congenital adrenal hyperplasia. J Pediatr. 1987;111:1.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christine M. Trapp
    • 1
    • 2
  • Lenore S. Levine
    • 3
  • Sharon E. Oberfield
    • 4
  1. 1.PediatricsUniversity of Connecticut School of MedicineHartfordUSA
  2. 2.Division of Pediatric Diabetes and EndocrinologyHartfordUSA
  3. 3.PediatricsCollege of Physicians & Surgeons of Columbia UniversityNew YorkUSA
  4. 4.Division of Pediatric Endocrinology, Diabetes and MetabolismMorgan Stanley Children’s Hospital, NY Presbyterian/Columbia UniversityNew YorkUSA

Personalised recommendations