Advertisement

Effect of Endurance Sport on the Right Heart

  • Antonis S. Manolis
  • Antonis A. Manolis
Chapter

Abstract

The right ventricle (RV) responds differently to prolonged exhaustive and competitive exercise, usually with enlargement, than does the left ventricle. Evidence has accumulated indicating that regular intense endurance exercise and sporting can promote electrical and structural remodeling of the RV, leading to fibrosis. This “exercise-induced cardiomyopathy” mimics features observed in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). In addition, exercise-induced impairment in atrial function (atrial remodeling), mostly in the right atrium related to RV systolic dysfunction, has also been suggested which favors the development of atrial arrhythmias. It should be noted that these adverse effects seem to be limited to extreme intensity levels of exercise and not related to recreational or moderate exercise levels. These deleterious effects of heavy endurance exercise on the right heart can be studied by several methods, including standard and newer echocardiographic techniques, stress testing methods, standard ECG, cardiac magnetic resonance imaging, biomarkers, electroanatomical mapping and/or an electrophysiology study, and in specific cases by genetic testing. All these issues are reviewed in this chapter.

Keywords

Exercise Endurance sport Right heart Right ventricle Cardiac arrhythmias Sudden death Arrhythmogenic right ventricular cardiomyopathy/dysplasia Echocardiography Electrocardiography Cardiac magnetic resonance imaging 

Abbreviations

AF

Atrial fibrillation

ARVD/C

Arrhythmogenic right ventricular dysplasia/cardiomyopathy

CMR

Cardiac magnetic resonance imaging

ECG

Electrocardiogram

RBBB

Right bundle branch block

RV

Right ventric-le (-ular)

Notes

Conflict of Interest

None declared.

References

  1. 1.
    Douglas PS, O’Toole ML, Hiller WD, et al. Different effects of prolonged exercise on the right and left ventricles. J Am Coll Cardiol. 1990;15:64–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Heidbuchel H, Hoogsteen J, Fagard R, et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J. 2003;24:1473–80.CrossRefPubMedGoogle Scholar
  3. 3.
    O’Keefe JH, Patil HR, Lavie CJ, et al. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc. 2012;87:587–95.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    D’Andrea A, Morello A, Iacono AM, et al. Right ventricular changes in highly trained athletes: between physiology and pathophysiology. J Cardiovasc Echogr. 2015;25:97–102.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Manolis AS, Manolis AA. Exercise and arrhythmias: a double-edged sword. Pacing Clin Electrophysiol. 2016;39:748–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Sanz-de la Garza M, Grazioli G, Bijnens BH, et al. Acute, exercise dose-dependent impairment in atrial performance during an endurance race: 2d ultrasound speckle-tracking strain analysis. JACC Cardiovasc Imaging. 2016;9:1380–8.CrossRefPubMedGoogle Scholar
  7. 7.
    La Gerche A, Burns AT, Mooney DJ, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33:998–1006.CrossRefPubMedGoogle Scholar
  8. 8.
    James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013;62:1290–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Sanz-de la Garza M, Rubies C, Batlle M, et al. Severity of structural and functional right ventricular remodeling depends on training load in an experimental model of endurance exercise. Am J Physiol Heart Circ Physiol. 2017;313:H459–68.  https://doi.org/10.1152/ajpheart.00763.2016.CrossRefPubMedGoogle Scholar
  10. 10.
    Grazioli G, Sanz M, Montserrat S, et al. Echocardiography in the evaluation of athletes. F1000Research. 2015;4:151.PubMedPubMedCentralGoogle Scholar
  11. 11.
    D’Ascenzi F, Pisicchio C, Caselli S, et al. RV remodeling in olympic athletes. JACC Cardiovasc Imaging. 2017;10:385–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Oxborough D, Sharma S, Shave R, et al. The right ventricle of the endurance athlete: the relationship between morphology and deformation. J Am Soc Echocardiogr. 2012;25:263–71.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    La Gerche A, Burns AT, D’Hooge J, et al. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr. 2012;25:253–262.e251.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stewart GM, Chan J, Yamada A, et al. Impact of high-intensity endurance exercise on regional left and right ventricular myocardial mechanics. Eur Heart J Cardiovasc Imaging. 2017;18:688–96.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Teske AJ, Prakken NH, De Boeck BW, et al. Echocardiographic tissue deformation imaging of right ventricular systolic function in endurance athletes. Eur Heart J. 2009;30:969–77.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Galanti G, Stefani L, Mascherini G, et al. Left ventricular remodeling and the athlete’s heart, irrespective of quality load training. Cardiovasc Ultrasound. 2016;14:46.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    D’Ascenzi F, Pelliccia A, Valentini F, et al. Training-induced right ventricular remodelling in pre-adolescent endurance athletes: the athlete’s heart in children. Int J Cardiol. 2017;236:270–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    D’Ascenzi F, Pelliccia A, Corrado D, et al. Right ventricular remodelling induced by exercise training in competitive athletes. Eur Heart J Cardiovasc Imaging. 2016;17:301–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Elliott AD, La Gerche A. The right ventricle following prolonged endurance exercise: are we overlooking the more important side of the heart? A meta-analysis. Br J Sports Med. 2015;49:724–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sanz de la Garza M, Grazioli G, Bijnens BH, et al. Inter-individual variability in right ventricle adaptation after an endurance race. Eur J Prev Cardiol. 2016;23:1114–24.CrossRefPubMedGoogle Scholar
  21. 21.
    Ujka K, Bruno RM, Catuzzo B, et al. P260Right cardiac chambers remodeling in marathon and ultra-trail athletes detected by speckle-tracking echocardiography. Eur Heart J Cardiovasc Imaging. 2016;17:ii45–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Sanz-de la Garza M, Giraldeau G, Marin J, et al. Influence of gender on right ventricle adaptation to endurance exercise: an ultrasound two-dimensional speckle-tracking stress study. Eur J Appl Physiol. 2017;117:389–96.CrossRefPubMedGoogle Scholar
  23. 23.
    Wasfy MM, Weiner RB, Wang F, et al. Endurance exercise-induced cardiac remodeling: not all sports are created equal. J Am Soc Echocardiogr. 2015;28:1434–40.CrossRefPubMedGoogle Scholar
  24. 24.
    La Gerche A, Claessen G, Dymarkowski S, et al. Exercise-induced right ventricular dysfunction is associated with ventricular arrhythmias in endurance athletes. Eur Heart J. 2015;36:1998–2010.CrossRefPubMedGoogle Scholar
  25. 25.
    Lord R, George K, Somauroo J, et al. Exploratory insights from the right-sided electrocardiogram following prolonged endurance exercise. Eur J Sport Sci. 2016;16:1014–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Claessen G, Brosnan M, La Gerche A, et al. Signs of RV overload on the athlete’s ECG. J Electrocardiol. 2015;48:399–406.CrossRefPubMedGoogle Scholar
  27. 27.
    Brosnan M, La Gerche A, Kalman J, et al. Comparison of frequency of significant electrocardiographic abnormalities in endurance versus nonendurance athletes. Am J Cardiol. 2014;113:1567–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Corrado D, Pelliccia A, Heidbuchel H, et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010;31:243–59.CrossRefPubMedGoogle Scholar
  29. 29.
    Drezner JA, Ackerman MJ, Anderson J, et al. Electrocardiographic interpretation in athletes: the ‘Seattle criteria’. Br J Sports Med. 2013;47:122–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Zaidi A, Sheikh N, Jongman JK, et al. Clinical differentiation between physiological remodeling and arrhythmogenic right ventricular cardiomyopathy in athletes with marked electrocardiographic repolarization anomalies. J Am Coll Cardiol. 2015;65:2702–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Wasfy MM, DeLuca J, Wang F, et al. ECG findings in competitive rowers: normative data and the prevalence of abnormalities using contemporary screening recommendations. Br J Sports Med. 2015;49:200–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim JH, Noseworthy PA, McCarty D, et al. Significance of electrocardiographic right bundle branch block in trained athletes. Am J Cardiol. 2011;107:1083–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Scott JM, Esch BT, Haykowsky MJ, et al. Effects of high intensity exercise on biventricular function assessed by cardiac magnetic resonance imaging in endurance trained and normally active individuals. Am J Cardiol. 2010;106:278–83.CrossRefPubMedGoogle Scholar
  34. 34.
    van de Schoor FR, Aengevaeren VL, Hopman MT, et al. Myocardial fibrosis in athletes. Mayo Clin Proc. 2016;91:1617–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Bohm P, Schneider G, Linneweber L, et al. Right and left ventricular function and mass in male elite master athletes: a controlled contrast-enhanced cardiovascular magnetic resonance study. Circulation. 2016;133:1927–35.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Aaron CP, Tandri H, Barr RG, et al. Physical activity and right ventricular structure and function. The MESA-Right Ventricle Study. Am J Respir Crit Care Med. 2011;183:396–404.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. 2010;121:2462–508.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, et al. Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury – a metaanalysis of 45 studies. Clin Chem. 2015;61:1246–55.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shave R, Oxborough D. Exercise-induced cardiac injury: evidence from novel imaging techniques and highly sensitive cardiac troponin assays. Prog Cardiovasc Dis. 2012;54:407–15.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    La Gerche A, Inder WJ, Roberts TJ, et al. Relationship between inflammatory cytokines and indices of cardiac dysfunction following intense endurance exercise. PLoS One. 2015;10:e0130031.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Neilan TG, Januzzi JL, Lee-Lewandrowski E, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006;114:2325–33.CrossRefPubMedGoogle Scholar
  42. 42.
    Dello Russo A, Pieroni M, Santangeli P, et al. Concealed cardiomyopathies in competitive athletes with ventricular arrhythmias and an apparently normal heart: role of cardiac electroanatomical mapping and biopsy. Heart Rhythm. 2011;8:1915–22.CrossRefGoogle Scholar
  43. 43.
    Venlet J, Piers SR, Jongbloed JD, et al. Isolated subepicardial right ventricular outflow tract scar in athletes with ventricular tachycardia. J Am Coll Cardiol. 2017;69:497–507.CrossRefPubMedGoogle Scholar
  44. 44.
    Dalal D, James C, Devanagondi R, et al. Penetrance of mutations in plakophilin-2 among families with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol. 2006;48:1416–24.CrossRefPubMedGoogle Scholar
  45. 45.
    Sawant AC, Bhonsale A, te Riele AS, et al. Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations. J Am Heart Assoc. 2014;3:e001471.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maron BJ, Haas TS, Ahluwalia A, et al. Demographics and epidemiology of sudden deaths in young competitive athletes: from the United States National Registry. Am J Med. 2016;129:1170–7.CrossRefPubMedGoogle Scholar
  47. 47.
    George K, Whyte GP, Green DJ, et al. The endurance athletes heart: acute stress and chronic adaptation. Br J Sports Med. 2012;46(Suppl 1):i29–36.CrossRefPubMedGoogle Scholar
  48. 48.
    Levine BD, Baggish AL, Kovacs RJ, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 1: classification of sports: dynamic, static, and impact:A Scientific Statement From the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66:2350–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Third Department of CardiologyAthens University School of MedicineAthensGreece
  2. 2.Patras University School of MedicinePatrasGreece

Personalised recommendations