Advertisement

POST-LVAD Right Ventricular Failure

  • Kaan Kırali
  • Tanıl Özer
  • Emre Selçuk
Chapter

Abstract

Patient selection and implantation timing are key determinants of success for therapy with a left ventricular assist device (LVAD). End-stage heart failure patients with stable disease on inotropic treatment are the best candidates, whereas patients with cardiogenic shock are considered too ill for LVAD support and should be receive temporary mechanical circulatory support devices to optimize their condition before LVAD implantation. However, if implantation is delayed, outcomes may worsen due to secondary organ damage caused by prolonged end-stage heart failure, with the potential for right heart failure to develop and lead to death. Most patients with advanced left ventricular failure assessed for LVAD implantation also have some degree of right ventricular dysfunction. Though LVADs are effective for treating left ventricular failure, they do not intrinsically treat, and in some instances may worsen, right ventricular failure (RVF). Indeed post-LVAD RVF is a major complication of device implantation and significantly increases postoperative morbidity and mortality. The etiology is often multifactorial, including pre-existing right ventricular dysfunction, leftward shifting of the interventricular septum, excessive volume overload, and suboptimal pulmonary afterload reduction. Different echocardiographic, hemodynamic, and biologic markers may help to the prevention, early diagnosis, and effective treatment of post-LVAD RVF. Specifically, post-LVAD RVF results in poor filling of the left ventricle and poor LVAD output that often necessitate additional right ventricular support with inotropes and pulmonary vasodilators, or rarely, a right-sided mechanical device. Additional treatments that can improve right ventricular function after LVAD implant include annuloplasty to reduce the severity of tricuspid regurgitation, aggressive diuresis to reduce volume overload, and treatment to maintain aortic valve patency in every cycle, to lower excessive left ventricular loading.

Keywords

Right ventricular failure Right heart failure Right ventricular dysfunction Pulmonary hypertension Pulmonary vascular resistance Assist device LVAD Mechanical circulatory support Leftward septal shift Tricuspid regurgitation Volume overloading Septal contractility 

References

  1. 1.
    Kırali K, Yerlikhan ÖA, Hançer H. Invasive treatment in advanced (Stage-D) heart failure. In: Kırali K, editor. Cardiomyopaties: types and treatments. Crotia: InTech; 2017. p. 405–57.  https://doi.org/10.5572/67455.CrossRefGoogle Scholar
  2. 2.
    Kirklin JK, Cantor R, Mohacsi P, Gummert J, De By T, Hannan MM, Kormos RL, Schueler S, Lund LH, Nakatani T, Taylor R, Lannon J. First annual IMACS report: a global international society for heart and lung transplantation registry for mechanical circulatory support. J Heart Lung Transplant. 2016;35(4):407–12.  https://doi.org/10.1016/j.healun.2016.01.002.CrossRefPubMedGoogle Scholar
  3. 3.
    Englert JA 3rd, Davis JA, Krim SR. Mechanical circulatory support for the failing heart: continuous-flow left ventricular assist devices. Ochsner J. 2016;16(3):263–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B. Left ventricular assist devices—current state and perspectives. J Thorac Dis. 2016;8(8):E660–6.  https://doi.org/10.21037/jtd.2016.07.13.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB. Right heart failure: toward a common language. J Heart Lung Transplant. 2014;33(2):123–6.  https://doi.org/10.1016/j.healun.2013.10.015.CrossRefPubMedGoogle Scholar
  6. 6.
    Kirklin JK, Naftel DC, Stevenson LW, Kormos RL, Pagani FD, Miller MA, Ulisney K, Young JB. INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant. 2008;27(10):1065–72.  https://doi.org/10.1016/j.healun.2008.07.021.CrossRefPubMedGoogle Scholar
  7. 7.
    Takeda K, Takayama H, Colombo PC, Yuzefpolskaya M, Fukuhara S, Han J, Kurlansky P, Mancini DM, Naka Y. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2015;34(8):1024–32.  https://doi.org/10.1016/j.healun.2015.03.011.CrossRefPubMedGoogle Scholar
  8. 8.
    Kimmaliardjuk DM, Ruel M. Cardiac passive-aggressive behavior? The right ventricle in patients with a left ventricular assist device. Expert Rev Cardiovasc Ther. 2017;15(4):267–76.  https://doi.org/10.1080/14779072.2017.1308252.CrossRefPubMedGoogle Scholar
  9. 9.
    Bellavia D, Iacovoni A, Scardulla C, Moja L, Pilato M, Kushwaha SS, Senni M, Clemenza F, Agnese V, Falletta C, Romano G, Maalouf J, Dandel M. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail. 2017;19(7):926–46.  https://doi.org/10.1002/ejhf.733.CrossRefPubMedGoogle Scholar
  10. 10.
    Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–504.  https://doi.org/10.1016/j.healun.2015.CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng A, Williamitis CA, Slaughter MS. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? Ann Cardiothorac Surg. 2014;3(6):573–81.  https://doi.org/10.3978/j.issn.2225-319X.2014.08.24.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Takeda K, Naka Y, Yang JA, Uriel N, Colombo PC, Jorde UP, Takayama H. Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant. 2014;33(2):141–8.  https://doi.org/10.1016/j.healun.2013.06.025.CrossRefPubMedGoogle Scholar
  13. 13.
    Santamore WP, Dell'Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308.  https://doi.org/10.1016/S0033-0620(98)80049-2.CrossRefPubMedGoogle Scholar
  14. 14.
    Houston BA, Shah KB, Mehra MR, Tedford RJ. A new “twist” on right heart failure with left ventricular assist systems. J Heart Lung Transplant. 2017;36(7):701–7.  https://doi.org/10.1016/j.healun.2017.03.014.CrossRefPubMedGoogle Scholar
  15. 15.
    Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail. 2017;19(5):595–602.  https://doi.org/10.1002/ejhf.779.CrossRefPubMedGoogle Scholar
  16. 16.
    Morgan JA, Paone G, Nemeh HW, Murthy R, Williams CT, Lanfear DE, Tita C, Brewer RJ. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant. 2013;32(4):398–403.  https://doi.org/10.1016/j.healun.2012.12.018.CrossRefPubMedGoogle Scholar
  17. 17.
    Kırali K, Özer T, Özgür MM. Pathophysiology in heart failure. In: Kırali K, editor. Cardiomyopaties: types and treatments. Crotia: InTech; 2017. p. 17–38.  https://doi.org/10.5772/66887.CrossRefGoogle Scholar
  18. 18.
    Koprivanac M, Kelava M, Sirić F, Cruz VB, Moazami N, Mihaljević T. Predictors of right ventricular failure after left ventricular assist device implantation. Croat Med J. 2014;55(6):587–95.  https://doi.org/10.3325/cmj.2014.55.587.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney’s perspective. Heart Fail Rev. 2015;20(4):519–32.  https://doi.org/10.1007/s10741-015-9481-z.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hasin T, Topilsky Y, Schirger JA, Li Z, Zhao Y, Boilson BA, Clavell AL, Rodeheffer RJ, Frantz RP, Edwards BS, Pereira NL, Joyce L, Daly R, Park SJ, Kushwaha SS. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36.  https://doi.org/10.1016/j.jacc.2011.09.038.CrossRefPubMedGoogle Scholar
  21. 21.
    Brisco MA, Testani JM, Cook JL. Renal dysfunction and chronic mechanical circulatory support: from patient selection to long-term management and prognosis. Curr Opin Cardiol. 2016;31(3):277–86.  https://doi.org/10.1097/HCO.0000000000000278.CrossRefPubMedGoogle Scholar
  22. 22.
    Brisco MA, Sundareswaran KS, Milano CA, Feldman D, Testani JM, Ewald GA, Slaughter MS, Farrar DJ, Goldberg LR. Incidence, risk, and consequences of atrial arrhythmias in patients with continuous-flow left ventricular assist devices. J Card Surg. 2014;29(4):572–80.  https://doi.org/10.1111/jocs.12336.CrossRefPubMedGoogle Scholar
  23. 23.
    Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30.  https://doi.org/10.1016/j.healun.2015.06.015.CrossRefPubMedGoogle Scholar
  24. 24.
    Fitzpatrick JR 3rd, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, Dougherty D, McCormick RC, Laporte CA, Cohen JE, Southerland KW, Howard JL, Jessup ML, Morris RJ, Acker MA, Woo YJ. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92.  https://doi.org/10.1016/j.healun.2008.09.006.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a preoperative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72.  https://doi.org/10.1016/j.jacc.2008.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, Horton K, Haddad F, Li DY, Renlund DG, Fisher PW. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105(7):1030–5.  https://doi.org/10.1016/j.amjcard.2009.11.026.CrossRefPubMedGoogle Scholar
  27. 27.
    Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, Massey T, Milano CA, Moazami N, Sundareswaran KS, Farrar DJ, HeartMate II Clinical Investigators. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.  https://doi.org/10.1016/j.jtcvs.2009.11.020.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, Antaki JF. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant. 2012;31(2):140–9.  https://doi.org/10.1016/j.healun.2011.11.003.CrossRefPubMedGoogle Scholar
  29. 29.
    Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, Acker AL, Hiesinger W, Howard JL, Acker MA, Woo YJ. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63.  https://doi.org/10.1016/j.athoracsur.2013.03.099.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aissaoui N, Salem JE, Paluszkiewicz L, Morshuis M, Guerot E, Gorria GM, Fagon JY, Gummert J, Diebold B. Assessment of right ventricular dysfunction predictors before the implantation of a left ventricular assist device in end-stage heart failure patients using echocardiographic measures (ARVADE): combination of left and right ventricular echocardiographic variables. Arch Cardiovasc Dis. 2015;108(5):300–9.  https://doi.org/10.1016/j.acvd.2015.01.011.CrossRefPubMedGoogle Scholar
  31. 31.
    Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4(9):711–21.  https://doi.org/10.1016/j.jchf.2016.04.004.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pettinari M, Jacobs S, Rega F, Verbelen T, Droogne W, Meyns B. Are right ventricular risk scores useful? Eur J Cardiothorac Surg. 2012;42(4):621–6.  https://doi.org/10.1093/ejcts/ezs104.CrossRefPubMedGoogle Scholar
  33. 33.
    Karimov JH, Sunagawa G, Horwath D, Fukamachi K, Starling RC, Moazami N. Limitations to chronic right ventricular assist device support. Ann Thorac Surg. 2016;102(2):651–8.  https://doi.org/10.1016/j.athoracsur.2016.02.006.CrossRefPubMedGoogle Scholar
  34. 34.
    Kalogeropoulos AP, Kelkar A, Weinberger JF, Morris AA, Georgiopoulou VV, Markham DW, Butler J, Vega JD, Smith AL. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603.  https://doi.org/10.1016/j.healun.2015.05.005.CrossRefPubMedGoogle Scholar
  35. 35.
    Cowger J, Shah P, Stulak J, Maltais S, Aaronson KD, Kirklin JK, Pagani FD, Salerno C. INTERMACS profiles and modifiers: heterogeneity of patient classification and the impact of modifiers on predicting patient outcome. J Heart Lung Transplant. 2016;35(4):440–8.  https://doi.org/10.1016/j.healun.2015.10.037.CrossRefPubMedGoogle Scholar
  36. 36.
    Kato TS, Kitada S, Yang J, Wu C, Takayama H, Naka Y, Farr M, Mancini DM, Schulze PC. Relation of preoperative serum albumin levels to survival in patients undergoing left ventricular assist device implantation. Am J Cardiol. 2013;112(9):1484–8.  https://doi.org/10.1016/j.amjcard.2013.06.023.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dunlay SM, Park SJ, Joyce LD, Daly RC, Stulak JM, McNallan SM, Roger VL, Kushwaha SS. Frailty and outcomes after implantation of left ventricular assist device as destination therapy. J Heart Lung Transplant. 2014;33(4):359–65.  https://doi.org/10.1016/j.healun.2013.12.014.CrossRefPubMedGoogle Scholar
  38. 38.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713.  https://doi.org/10.1016/j.echo.2010.05.010.CrossRefPubMedGoogle Scholar
  39. 39.
    Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB, Weng Y, Hennig F, Krabatsch T, Hetzer R. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27(12):1275–81.  https://doi.org/10.1016/j.healun.2008.08.012.CrossRefPubMedGoogle Scholar
  40. 40.
    Vivo RP, Cordero-Reyes AM, Qamar U, Garikipati S, Trevino AR, Aldeiri M, Loebe M, Bruckner BA, Torre-Amione G, Bhimaraj A, Trachtenberg BH, Estep JD. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32(8):792–9.  https://doi.org/10.1016/j.healun.2013.05.016.CrossRefPubMedGoogle Scholar
  41. 41.
    Kato TS, Farr M, Schulze PC, Maurer M, Shahzad K, Iwata S, Homma S, Jorde U, Takayama H, Naka Y, Gillam L, Mancini D. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2012;109(2):246–51.  https://doi.org/10.1016/j.amjcard.2011.08.040.CrossRefPubMedGoogle Scholar
  42. 42.
    Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60(6):521–8.  https://doi.org/10.1016/j.jacc.2012.02.073.CrossRefPubMedGoogle Scholar
  43. 43.
    Kiernan MS, French AL, DeNofrio D, Parmar YJ, Pham DT, Kapur NK, Pandian NG, Patel AR. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189–97.  https://doi.org/10.1016/j.cardfail.2014.12.009.CrossRefPubMedGoogle Scholar
  44. 44.
    Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Kuppe H, Habazettl H. Impact of tricuspid valve annulus dilation on mid-term survival after implantation of a left ventricular assist device. J Heart Lung Transplant. 2012;31(9):967–71.  https://doi.org/10.1016/j.healun.2012.06.003.CrossRefPubMedGoogle Scholar
  45. 45.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J, International Society for Heart and Lung Transplantation. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.  https://doi.org/10.1016/j.healun.2012.09.013.CrossRefPubMedGoogle Scholar
  46. 46.
    Hayek S, Sims DB, Markham DW, Butler J, Kalogeropoulos AP. Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging. 2014;7(2):379–89.  https://doi.org/10.1161/CIRCIMAGING.113.001127.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Grandin EW, Zamani P, Mazurek JA, Troutman GS, Birati EY, Vorovich E, Chirinos JA, Tedford RJ, Margulies KB, Atluri P, Rame JE. Right ventricular response to pulsatile load is associated with early right heart failure and mortality after left ventricular assist device. J Heart Lung Transplant. 2017;36(1):97–105.  https://doi.org/10.1016/j.healun.2016.06.015.CrossRefPubMedGoogle Scholar
  48. 48.
    Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35(1):67–73.  https://doi.org/10.1016/j.healun.2015.06.009.CrossRefPubMedGoogle Scholar
  49. 49.
    Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22(2):110–6.  https://doi.org/10.1016/j.cardfail.2015.10.019.CrossRefPubMedGoogle Scholar
  50. 50.
    Yoshioka D, Takayama H, Colombo PC, Yuzefpolskaya M, Garan AR, Topkara VK, Han J, Kurlansky P, Naka Y, Takeda K. Changes in end-organ function in patients with prolonged continuous-flow left ventricular assist device support. Ann Thorac Surg. 2017;103(3):717–24.  https://doi.org/10.1016/j.athoracsur.2016.12.018.CrossRefPubMedGoogle Scholar
  51. 51.
    Zabarovskaja S, Hage C, Linde C, Daubert JC, Donal E, Gabrielsen A, Mellbin L, Lund LH. Adaptive cardiovascular hormones in a spectrum of heart failure phenotypes. Int J Cardiol. 2015;189:6–11.  https://doi.org/10.1016/j.ijcard.2015.03.381.CrossRefPubMedGoogle Scholar
  52. 52.
    Nymo SH, Aukrust P, Kjekshus J, McMurray JJ, Cleland JG, Wikstrand J, Muntendam P, Wienhues-Thelen U, Latini R, Askevold ET, Gravning J, Dahl CP, Broch K, Yndestad A, Gullestad L, Ueland T, CORONA Study Group. Limited added value of circulating inflammatory biomarkers in chronic heart failure. JACC Heart Fail. 2017;5(4):256–64.  https://doi.org/10.1016/j.jchf.2017.01.008.CrossRefPubMedGoogle Scholar
  53. 53.
    Sun RR, Lu L, Liu M, Cao Y, Li XC, Liu H, Wang J, Zhang PY. Biomarkers and heart disease. Eur Rev Med Pharmacol Sci. 2014;18(19):2927–35.  https://doi.org/10.1007/s10741-015-9504-9.CrossRefPubMedGoogle Scholar
  54. 54.
    Kramer F, Sabbah HN, Januzzi JJ, Zannad F, Peter van Tintelen J, Schelbert EB, Kim RJ, Milting H, Vonk R, Neudeck B, Clark R, Witte K, Dinh W, Pieske B, Butler J, Gheorghiade M. Redefining the role of biomarkers in heart failure trials: expert consensus document. Heart Fail Rev. 2017;22(3):263–77.  https://doi.org/10.1007/s10741-017-9608-5.CrossRefPubMedGoogle Scholar
  55. 55.
    Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Simic D, Radovanovic S, Simic T. Novel biomarkers of heart failure. Adv Clin Chem. 2017;79:93–152.  https://doi.org/10.1016/bs.acc.2016.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lichtenauer M, Jirak P, Wernly B, Paar V, Rohm I, Jung C, Schernthaner C, Kraus J, Motloch LJ, Yilmaz A, Hoppe UC, Christian Schulze P, Kretzschmar D, Pistulli R. A comparative analysis of novel cardiovascular biomarkers in patients with chronic heart failure. Eur J Intern Med. 2017;44:31–8.  https://doi.org/10.1016/j.ejim.2017.05.027.CrossRefPubMedGoogle Scholar
  57. 57.
    Gaggin HK, Januzzi JL Jr. Biomarkers and diagnostics in heart failure. Biochim Biophys Acta. 2013;1832(12):2442–50.  https://doi.org/10.1016/j.bbadis.2012.12.014.CrossRefPubMedGoogle Scholar
  58. 58.
    deFilippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, Seliger SL. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304(22):2494–502.  https://doi.org/10.1001/jama.2010.1708.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    van der Linden N, Klinkenberg LJ, Bekers O, Loon LJ, Dieijen-Visser MP, Zeegers MP, Meex SJ. Prognostic value of basal high-sensitive cardiac troponin levels on mortality in the general population: a meta-analysis. Medicine. 2016;95(52):e5703.  https://doi.org/10.1097/MD.0000000000005703.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sze J, Mooney J, Barzi F, Hillis GS, Chow CK. Cardiac troponin and its relationship to cardiovascular outcomes in community populations: a systematic review and meta-analysis. Heart Lung Circ. 2016;25(3):217–28.  https://doi.org/10.1016/j.hlc.2015.09.001.CrossRefPubMedGoogle Scholar
  61. 61.
    Morbach C, Marx A, Kaspar M, Güder G, Brenner S, Feldmann C, Störk S, Vollert JO, Ertl G, Angermann CE, INH Study Group and the Competence Network Heart Failure. Prognostic potential of midregional pro-adrenomedullin following decompensation for systolic heart failure: comparison with cardiac natriuretic peptides. Eur J Heart Fail. 2017;19(9):1166–75.  https://doi.org/10.1002/ejhf.859.CrossRefPubMedGoogle Scholar
  62. 62.
    Nayak A, Neill C, Kormos RL, Lagazzi L, Halder I, McTiernan C, Larsen J, Inashvili A, Teuteberg J, Bachman TN, Hanley-Yanez K, McNamara DM, Simon MA. Chemokine receptor patterns and right heart failure in mechanical circulatory support. J Heart Lung Transplant. 2017;36(6):657–65.  https://doi.org/10.1016/j.healun.2016.12.007.CrossRefPubMedGoogle Scholar
  63. 63.
    Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, Parikh CR, Testani JM. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75.  https://doi.org/10.1161/CIRCHEARTFAILURE.113.000507.CrossRefPubMedGoogle Scholar
  64. 64.
    Sumida M, Doi K, Kinoshita O, Kimura M, Ono M, Hamasaki Y, Matsubara T, Ishii T, Yahagi N, Nangaku M, Noiri E. Perioperative plasma neutrophil gelatinase-associated lipocalin measurement in patients who undergo left ventricular assist device implantation surgery. Circ J. 2014;78(8):1891–9.  https://doi.org/10.1253/circj.CJ-14-0008.CrossRefPubMedGoogle Scholar
  65. 65.
    Kashiyama N, Toda K, Nakamura T, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, Saito S, Yoshioka D, Sawa Y. Evaluation of right ventricular function using liver stiffness in patients with left ventricular assist device. Eur J Cardiothorac Surg. 2017;51(4):715–21.  https://doi.org/10.1093/ejcts/ezw419.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Palmer B, Lampert B, Mathier MA. Management of right ventricular failure in pulmonary hypertension (and after LVAD implantation). Curr Treat Options Cardiovasc Med. 2013;15(5):533–43.  https://doi.org/10.1007/s11936-013-0267-0.CrossRefPubMedGoogle Scholar
  67. 67.
    Baker WL, Radojevic J, Gluck JA. Systematic review of phosphodiesterase-5 inhibitor use in right ventricular failure following left ventricular assist device implantation. Artif Organs. 2016;40(2):123–8.  https://doi.org/10.1111/aor.12518.CrossRefPubMedGoogle Scholar
  68. 68.
    Imamura T, Kinugawa K, Nitta D, Hatano M, Kinoshita O, Nawata K, Kyo S, Ono M. Prophylactic intra-aortic balloon pump before ventricular assist device implantation reduces perioperative medical expenses and improves postoperative clinical course in INTERMACS profile 2 patients. Circ J. 2015;79(9):1963–9.  https://doi.org/10.1253/circj.CJ-15-0122.CrossRefPubMedGoogle Scholar
  69. 69.
    Goldraich L, Kawajiri H, Foroutan F, Braga J, Billia P, Misurka J, Stansfield WE, Yau T, Ross HJ, Rao V. Tricuspid valve annular dilation as a predictor of right ventricular failure after ımplantation of a left ventricular assist device. J Card Surg. 2016;31(2):110–6.  https://doi.org/10.1111/jocs.12685.CrossRefPubMedGoogle Scholar
  70. 70.
    Brewer RJ, Cabrera R, El-Atrache M, Zafar A, Hrobowski TN, Nemeh HM, Selektor Y, Paone G, Williams CT, Velez M, Tita C, Morgan JA, Lanfear DE. Relationship of tricuspid repair at the time of left ventricular assist device implantation and survival. Int J Artif Organs. 2014;37(11):834–8.  https://doi.org/10.5301/ijao.5000369.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Dunlay SM, Deo SV, Park SJ. Impact of tricuspid valve surgery at the time of left ventricular assist device ınsertion on postoperative outcomes. ASAIO J. 2015;61(1):15–20.  https://doi.org/10.1097/MAT.0000000000000145.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Song HK, Gelow JM, Mudd J, Chien C, Tibayan FA, Hollifield K, Naftel D, Kirklin J. Limited utility of tricuspid valve repair at the time of left ventricular assist device implantation. Ann Thorac Surg. 2016;101(6):2168–74.  https://doi.org/10.1016/j.athoracsur.2016.03.040.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Robertson JO, Grau-Sepulveda MV, Okada S, O'Brien SM, Matthew Brennan J, Shah AS, Itoh A, Damiano RJ, Prasad S, Silvestry SC. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: a Society of Thoracic Surgeons database analysis. J Heart Lung Transplant. 2014;33(6):609–17.  https://doi.org/10.1016/j.healun.2014.01.861.CrossRefPubMedGoogle Scholar
  74. 74.
    Akhter SA, Salabat MR, Philip JL, Valeroso TB, Russo MJ, Rich JD, Jeevanandam V. Durability of De Vega tricuspid valve annuloplasty for severe tricuspid regurgitation during left ventricular assist device implantation. Ann Thorac Surg. 2014;98(1):81–3.  https://doi.org/10.1016/j.athoracsur.2014.03.022.CrossRefPubMedGoogle Scholar
  75. 75.
    Potapov E, Meyer D, Swaminathan M, Ramsay M, El Banayosy A, Diehl C, Veynovich B, Gregoric ID, Kukucka M, Gromann TW, Marczin N, Chittuluru K, Baldassarre JS, Zucker MJ, Hetzer R. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30(8):870–8.  https://doi.org/10.1016/j.healun.2011.03.005.CrossRefPubMedGoogle Scholar
  76. 76.
    Antoniou T, Prokakis C, Athanasopoulos G, Thanopoulos A, Rellia P, Zarkalis D, Kogerakis N, Koletsis EN, Bairaktaris A. Inhaled nitric oxide plus iloprost in the setting of post-left assist device right heart dysfunction. Ann Thorac Surg. 2012;94(3):792–8.  https://doi.org/10.1016/j.athoracsur.2012.04.046.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kaan Kırali
    • 1
  • Tanıl Özer
    • 1
  • Emre Selçuk
    • 1
  1. 1.Department of Cardiovascular SurgeryDivision of Heart Transplantation and Mechanical Assist Device, Kartal Koşuyolu Education and Research HospitalIstanbulTurkey

Personalised recommendations