Advertisement

Right Heart Anatomy: A Short Uptodate

  • Mircea Ifrim
  • Ecaterina Bontaş
  • Daniel Cochior
  • Ion C. Ţintoiu
Chapter

Abstract

Despite of the first description of Sir William Harvey in 1616 looking the significance of right ventricle function for human heart and lungs, its importance was disregarded in clinical practice. Starting with 1950s until the 1970s, cardiovascular surgeons assessed techniques to treat right-heart hypoplasia and as a result they accepted the significance of right heart function. During last decade, the impact of right heart evaluation has been established for the treatment of cardiopulmonary disorders. Knowledge of the right heart anatomy, imaging pathology and related clinical manifestations is essential to prevent neglected features of cardiovascular diseases and false-positive diagnoses. Understanding image features of the human heart acquired by histological studies, echocardiography, computed tomography (CT), micro-CT studies, or diffusion tensor magnetic resonance imaging (DT-MRI) has a very important role in the correctness of anatomically outlining of the cardiac features, especially those associated to the conduction system. Studying classic anatomy of the heart on cadaveric samplings is a requirement to know what imaging investigations brings for the study of RV anatomy and physiology. Considering that, it has to be underlined important anatomical features of the human right heart.

Keywords

Right heart anatomy Right atrium Right ventricle Interatrial septum Interventricular septum Conduction system Right heart vessels Myoarchitecture of right heart Computational cardiac modelling and anatomy 

References

  1. 1.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.  https://doi.org/10.1161/CIRCULATIONAHA.107.653576.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Harvey W. Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus. 1628. Goldstein J. The right ventricle: what’s right and what’s wrong. Coron Artery Dis. 2005;16:1–3.CrossRefGoogle Scholar
  3. 3.
    Goldstein J. The right ventricle: what’s right and what’s wrong. Coron Artery Dis. 2005;16:1–3.Google Scholar
  4. 4.
    Ghio S, Klersy C, Magrini G, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140:272.CrossRefGoogle Scholar
  5. 5.
    Ifrim M, et al. Riscul malformativ in reproducerea umana. (malformation risk in human reproduction). Bucharest: Editura Medicala; 1979.Google Scholar
  6. 6.
    Malouf JF, Edwards WD, Tajik AJ, Seward JB. Functional anatomy of the heart. In: Fuster V, Alexander RW, O’Rourke RA, Roberts R, King SB, Wellens HJJ, eds. Hurt’s the Heart. 11th ed. New York, NY: McGraw-Hill, 2005;45–82.Google Scholar
  7. 7.
    Snell RS. The thorax: part II-the thoracic cavity. In: Clinical anatomy by regions. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 77–130.Google Scholar
  8. 8.
    Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129:1033–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA. Right ventricular myocardium derives from the anterior heart field. Circ Res. 2004;95:261–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Firpo C, Hoffman JI, Silverman NH. Evaluation of fetal heart dimensions from 12 weeks to term. Am J Cardiol. 2001;87(5):594–600.CrossRefPubMedGoogle Scholar
  11. 11.
    Borgdorff MA, Dickinson MG, Berger RM, Bartelds B. Right ventricular failure due to chronic pressure load: what have we learned in animal models since the NIH working group statement? Heart Fail Rev. 2015;20(4):475–91.  https://doi.org/10.1007/s10741-015-9479-6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sánchez-Quintana D, Doblado-Calatrava M, Cabrera JA, Macías Y, Saremi F. Anatomical basis for the cardiac interventional electrophysiologist. Biomed Res Int. 2015;2015:547364.  https://doi.org/10.1155/2015/547364.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pelosi A, Rubinstein J. In: Millis R, editor. Cardiac anatomy, advances in electrocardiograms - methods and analysis, PhD: InTech; 2012. doi:10.5772/21737. https://www.intechopen.com/books/advances-in-electrocardiograms-methods-and-analysis/cardiac-anatomy. (Open access article).CrossRefGoogle Scholar
  14. 14.
    Ifrim M, et al. Human Atlas of topographical, functional and clinical anatomy viscera. Citrus Heights: ARA Publisher: American Romanian Academy of Arts and Sciences; 2016. ISBN: 978-1-935924-20-3.Google Scholar
  15. 15.
    Cabrera JA, Saremi F, Sánchez-Quintana D. Left atrial appendage: anatomy and imaging landmarks pertinent to percutaneous transcatheter occlusion. Heart. 2014;100(20):1636–50.  https://doi.org/10.1136/heartjnl-2013-304464.CrossRefPubMedGoogle Scholar
  16. 16.
    Malik SB, Kwan D, Shah AB, Hsu JY. The right atrium: gateway to the heart--anatomic and pathologic imaging findings. Radiographics. 2015;35(1):14–31.  https://doi.org/10.1148/rg.351130010.CrossRefPubMedGoogle Scholar
  17. 17.
    Netter FH. In: Netter FH, Dalley AF, editors. Atlas of human anatomy. 5th ed. East Hanover: Navartis; 2010.Google Scholar
  18. 18.
    Matsuyama TA, Inoue S, Kobayashi Y, et al. Anatomical diversity and age-related histological changes in the human right atrial posterolateral wall. Europace. 2004;6(4):307–15.  https://doi.org/10.1016/j.eupc.2004.03.011.CrossRefPubMedGoogle Scholar
  19. 19.
    Akcay M, Bilen ES, Bilge M, Durmaz T, Kurt M. Prominent crista terminalis: as an anatomic structure leading to atrial arrhythmias and mimicking right atrial mass. J Am Soc Echocardiogr. 2007;20(2):e9–e10.  https://doi.org/10.1016/j.echo.2006.08.037. CrossRefGoogle Scholar
  20. 20.
    Ifrim M, Capusan I. Morfologie normala si patologica a tesutului conjunctiv (normal and pathological morphology of the connective tissue). Bucharest: Editura Medicala; 1983.Google Scholar
  21. 21.
    Sehar N, Mears J, Bisco S, Patel S, Lachman N, Asirvatham SJ. Anatomic guidance for ablation: atrial flutter, fibrillation, and outflow tract ventricular tachycardia. Indian Pacing Electrophysiol J. 2010;10(8):339–56.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Asirvatham SJ, et al. Prevalence of a right atrial pouch and extension of pectinate muscles across the tricuspid valve-IVC isthmus. Circulation. 2001;104:409.Google Scholar
  23. 23.
    Sánchez-Quintana D, Anderson RH, Cabrera JA, et al. The terminal crest: morphological features relevant to electrophysiology. Heart. 2002;88(4):406–11.  https://doi.org/10.1136/heart.88.4.406.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cabrera JA, et al. Angiographic anatomy of the inferior right atrial isthmus in patients with and without history of common atrial flutter. Circulation. 1999;99:3017.CrossRefPubMedGoogle Scholar
  25. 25.
    Cabrera JA, Sánchez-Quintana D, Ho SY, Medina A, Anderson RH. The architecture of the atrial musculature between the orifice of the inferior caval vein and the tricuspid valve: the anatomy of the isthmus. J Cardiovasc Electrophysiol. 1998;9(11):1186–95.  https://doi.org/10.1111/j.1540-8167.1998.tb00091.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Cosio FG, et al. Radiofrequency ablation of the inferior vena cava-tricuspid valve isthmus in common atrial flutter. Am J Cardiol. 1993;71:705.CrossRefPubMedGoogle Scholar
  27. 27.
    Da Costa A, et al. Effect of isthmus anatomy and ablation catheter on radiofrequency catheter ablation of the cavotricuspid isthmus. Circulation. 2004;110:1030.CrossRefPubMedGoogle Scholar
  28. 28.
    Cabrera JA, Sánchez-Quintana D, Farré J, Rubio JM, Siew YH. The inferior right atrial isthmus: further architectural insights for current and coming ablation technologies. J Cardiovasc Electrophysiol. 2005;16(4):402–8.  https://doi.org/10.1046/j.1540-8167.2005.40709.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Saremi F, Channual S, Raney A, et al. Imaging of patent foramen ovale with 64-section multidetector CT. Radiology. 2008;249(2):483–92.  https://doi.org/10.1148/radiol.2492080175.CrossRefPubMedGoogle Scholar
  30. 30.
    Hightower JS, Taylor AG, Ursell PC, LaBerge JM. The Chiari network: a rare cause of intracardiac guide wire entrapment. J Vasc Interv Radiol. 2015;26(4):604–6.  https://doi.org/10.1016/j.jvir.2014.12.004.CrossRefPubMedGoogle Scholar
  31. 31.
    Chang SL, Tai CT, Lin YJ, et al. The electroanatomic characteristics of the cavotricuspid isthmus: implications for the catheter ablation of atrial flutter. J Cardiovasc Electrophysiol. 2007;18(1):18–22.  https://doi.org/10.1111/j.1540-8167.2006.00647.x.CrossRefPubMedGoogle Scholar
  32. 32.
    Heidbüchel H, Willems R, Van Rensburg H, Adams J, Ector H, Van de Werf F. Right atrial angiographic evaluation of the posterior isthmus: relevance for ablation of typical atrial flutter. Circulation. 2000;101(18):2178–84.  https://doi.org/10.1161/01.cir.101.18.2178.CrossRefPubMedGoogle Scholar
  33. 33.
    El Yaman MM, et al. Methods to access the surgically excluded cavotricuspid isthmus for complete ablation of typical atrial flutter in patients with congenital heart defects. Heart Rhythm. 2009;6:949.  https://doi.org/10.1016/j.hrthm.2009.03.017.CrossRefPubMedGoogle Scholar
  34. 34.
    McKay T. Prominent crista terminalis and Eustachian ridge in the right atrium: two dimensional (2D) and three dimensional (3D) imaging. Eur J Echocardiogr. 2007;8:288.  https://doi.org/10.1016/j.euje.2006.03.006. CrossRefPubMedGoogle Scholar
  35. 35.
    Nakagawa H, et al. Role of the tricuspid annulus and the eustachian valve/ridge on atrial flutter. Relevance to catheter ablation of the septal isthmus and a new technique for rapid identification of ablation success. Circulation. 1996;94:407.CrossRefPubMedGoogle Scholar
  36. 36.
    Da Costa A, et al. Cavotricuspid isthmus angiography predicts atrial flutter ablation efficacy in 281 patients randomized between 8 mm- and externally irrigated-tip catheter. Eur Heart J. 2006;27(15):1833–40.  https://doi.org/10.1093/eurheartj/ehl121.CrossRefPubMedGoogle Scholar
  37. 37.
    Morton JB, et al. Phased-array intracardiac echocardiography for defining cavotricuspid isthmus anatomy during radiofrequency ablation of typical atrial flutter. J Cardiovasc Electrophysiol. 2003;14(6):591–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Okishige K, et al. Clinical study regarding the anatomical structures of the right atrial isthmus using intra-cardiac echocardiography: implication for catheter ablation of common atrial flutter. J Interv Card Electrophysiol. 2005;12(1):9–12.  https://doi.org/10.1007/s10840-005-5835-0. CrossRefPubMedGoogle Scholar
  39. 39.
    Anderson RH, Boyett MR, Dobrzynski H, Moorman AFM. The anatomy of the conduction system: implications for the clinical cardiologist. J Cardiovasc Transl Res. 2013;6:187–96.CrossRefPubMedGoogle Scholar
  40. 40.
    Anderson RH, Spicer DE, Hlavacek AJ, Hill A, Loukas M. Describing the cardiac components-attitudinally appropriate nomenclature. J Cardiovasc Transl Res. 2013;6(2):118–23.  https://doi.org/10.1007/s12265-012-9434-z.CrossRefPubMedGoogle Scholar
  41. 41.
    Romfh A, Pluchinotta FR, Porayette P, Valente AM, Sanders SP. Congenital heart defects in adults: a field guide for cardiologists. J Clin Exp Cardiol. 2012;2015(Suppl 8):7.Google Scholar
  42. 42.
    Faletra FF, Nucifora G, Ho SY. Imaging the atrial septum using real-time three-dimensional transesophageal echocardiography: technical tips, normal anatomy, and its role in transseptal puncture. J Am Soc Echocardiogr. 2011;24(6):593–9.  https://doi.org/10.1016/j.echo.2011.01.022.CrossRefPubMedGoogle Scholar
  43. 43.
    Mori S, Fukuzawa K, Takaya T, et al. Clinical cardiac structural anatomy reconstructed within the cardiac contour using multidetector-row computed tomography: atrial septum and ventricular septum. Clin Anat. 2015;29(3):342–52.  https://doi.org/10.1002/ca.22546.CrossRefPubMedGoogle Scholar
  44. 44.
    Anderson RH, Spicer DE, Brown NA, Mohun TJ. The development of septation in the four-chambered heart. Anat Rec. 2014;297(8):1414–29.  https://doi.org/10.1002/ar.22949.CrossRefGoogle Scholar
  45. 45.
    Lai W, Mertens L, Cohen M, Geva T. Echocardiography in pediatric and congenital heart disease: from fetus to adult. Hoboken: Wiley-Blackwell; 2009.CrossRefGoogle Scholar
  46. 46.
    Hasan A, Parvez A, Ajmal MR. Patent foramen ovale: clinical significance. J Indian Acad Clin Med. 2004;5(4):339–44.Google Scholar
  47. 47.
    Tzeis S, Andrikopoulos G, Deisenhofer I, Ho SY, Theodorakis G. Transseptal catheterization: considerations and caveats. Pacing Clin Electrophysiol. 2010;33(2):231–42.  https://doi.org/10.1111/j.1540-8159.2009.02598.x.CrossRefPubMedGoogle Scholar
  48. 48.
    Choudhary G, Malik AA, Stapleton D, Reddy PC. In: Lakshmanadoss U, editor. Assessment of right ventricle by echocardiogram, echocardiography in heart failure and cardiac electrophysiology: InTech; 2016. doi:  https://doi.org/10.5772/64781. https://www.intechopen.com/books/echocardiography-in-heart-failure-and-cardiac-electrophysiology/assessment-of-right-ventricle-by-echocardiogram. (Open access article).CrossRefGoogle Scholar
  49. 49.
    Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(Suppl 1):i2–13.  https://doi.org/10.1136/hrt.2005.077875.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Saleh S, Liakopoulos OJ, Buckberg GD. The septal motor of biventricular function. Eur J Cardiothorac Surg. 2006;29(Suppl 1):S126–38.  https://doi.org/10.1016/j.ejcts.2006.02.048.CrossRefPubMedGoogle Scholar
  51. 51.
    Sheehan FH, Ge S, Vick GW, Urnes K, Kerwin WS, Bolson EL, Chung T, Kovalchin JP, Sahn DJ, Jerosch-Herold M, Stolpen AH. Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. Am J Cardiol. 2008;101(1):107–13.  https://doi.org/10.1016/j.amjcard.2007.07.080. CrossRefPubMedGoogle Scholar
  52. 52.
    Sánchez-Quintana D, López-Mínguez JR, Macías Y, Cabrera JA, Saremi F. Left atrial anatomy relevant to catheter ablation. Cardiol Res Pract. 2014;2014:289720.  https://doi.org/10.1155/2014/289720.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ram F, Dhar M. A modified procedure for calculating person years of life lost. Janasamkhya. 1992;10(1-2):1–12.PubMedGoogle Scholar
  54. 54.
    Rogers JH, Bolling SF. The tricuspid valve: current perspective and evolving management of tricuspid regurgitation. Circulation. 2009;119(20):2718–25.CrossRefPubMedGoogle Scholar
  55. 55.
    Ostenfeld E, Flachskampf FA. Assessment of right ventricular volumes and ejection fraction by echocardiography: from geometric approximations to realistic shapes. Echo Res Pract. 2015;2(1):R1–R11.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Partridge JB, Anderson RH. Left ventricular anatomy: its nomenclature, segmentation, and planes of imaging. Clin Anat. 2009;22(1):77–84.  https://doi.org/10.1002/ca.20646.CrossRefPubMedGoogle Scholar
  57. 57.
    Saremi F, Ho SY, Sánchez-Quintana D. Morphological assessment of RVOT: CT and CMR imaging. J Am Coll Cardiol Img. 2013;6(5):631–5.  https://doi.org/10.1016/j.jcmg.2012.06.018.CrossRefGoogle Scholar
  58. 58.
    Anderson RH, Razavi R, Taylor AM. Cardiac anatomy revisited. J Anat. 2004;205(3):159–77.  https://doi.org/10.1111/j.0021-8782.2004.00330.x.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Spicer DE, Anderson RH. Methodological review of ventricular anatomy - the basis for understanding congenital cardiac malformations. J Cardiovasc Transl Res. 2013;6(2):145–54.  https://doi.org/10.1007/s12265-012-9432-1.CrossRefPubMedGoogle Scholar
  60. 60.
    Scanavacca M, Lara S, Hardy C, Pisani CF. How to identify & treat epicardial origin of outflow tract tachycardias. J Atr Fibrillation. 2015;7(6):1195.  https://doi.org/10.4022/jafib.1195.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bashore TM. Adult congenital heart disease: right ventricular outflow tract lesions. Circulation. 2007;115(14):1933–47.CrossRefPubMedGoogle Scholar
  62. 62.
    Foale R, Nihoyannopoulos P, McKenna W, et al. Echocardiographic measurement of the normal adult right ventricle. Br Heart J. 1986;5:633–44.Google Scholar
  63. 63.
    Grant RP, Downey FM, MacMahon H. The architecture of the right ventricular outflow tract in the normal human heart and in the presence of ventricular septal defects. Circulation. 1961;24:223–35.CrossRefPubMedGoogle Scholar
  64. 64.
    Iaizzo PA, editor. Handbook of cardiac anatomy, physiology, and device. 2nd ed. New York: Springer; 2009. ISBN: 9781603273718.Google Scholar
  65. 65.
    James TN. The internodal pathways of the human heart. Prog Cardiovasc Dis. 2001;43(6):495–535.CrossRefPubMedGoogle Scholar
  66. 66.
    Anderson RH, Ho SY. The architecture of the sinus node, the atrioventricular conduction axis, and the internodal atrial myocardium. J Cardiovasc Electrophysiol. 1998;9(11):1233–48.CrossRefPubMedGoogle Scholar
  67. 67.
    Hai JJ, Lachman N, Syed FF, Desimone CV, Asirvatham SJ. The anatomic basis for ventricular arrhythmia in the normal heart: what the student of anatomy needs to know. Clin Anat. 2014;27(6):885–93.  https://doi.org/10.1002/ca.22362.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Anderson RH, Becker AE, Brechenmacher C, Davies MJ, Rossi L. The human atrioventricular junctional area. A morphological study of the A-V node and bundle. Eur J Cardiol. 1975;3:11–25.PubMedGoogle Scholar
  69. 69.
    Anderson RH, Ho SY. The morphology of the specialized atrioventricular junctional area: the evolution of understanding. PACE. 2002;25:957–66.CrossRefPubMedGoogle Scholar
  70. 70.
    Anderson RH, Yanni J, Boyett MR, Chandler NJ, Dobrzynski H. The anatomy of the Cardiac Conduction System. Clin Anat. 2009;22:99–113.CrossRefPubMedGoogle Scholar
  71. 71.
    Loukas M, Klaassen Z, Tubbs RS, et al. Anatomical observations of the moderator band. Clin Anat. 2010;23(4):443–50.  https://doi.org/10.1002/ca.20968.CrossRefPubMedGoogle Scholar
  72. 72.
    Stephenson RS, Atkinson A, Kottas P, Perde F, Jafarzadeh F, Bateman M, Iaizzo PA, Zhao J, Zhang H, Anderson RH, Jarvis JC, Dobrzynski H. High resolution 3-dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling. Sci Rep. 2017;7(1):7188.  https://doi.org/10.1038/s41598-017-07694-8. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Tawara S. The conduction system of the mammalian heart: an anatomico-histological study of the atrioventricular bundle and the purkinje fibers. London: Imperial College Press; 2000.CrossRefGoogle Scholar
  74. 74.
    Davies F, Francis ETB. The conducting system of the vertebrate heart. Biol Rev. 1946;21:173–88.  https://doi.org/10.1111/j.1469-185X.1946.tb00323.x.CrossRefPubMedGoogle Scholar
  75. 75.
    Truex RC, Smythe MQ. Reconstruction of the human atrioventricular node. Anat Rec. 1967;158:11–9.  https://doi.org/10.1002/ar.1091580103.CrossRefPubMedGoogle Scholar
  76. 76.
    Oosthoek PW, Virágh S, Lamers WH, Moorman AF. Immunohistochemical delineation of the conduction system. II: the atrioventricular node and Purkinje fibers. Circ Res. 1993;73:482–91.  https://doi.org/10.1161/01.RES.73.3.482.CrossRefPubMedGoogle Scholar
  77. 77.
    Bovendeerd PH, Huyghe JM, Arts T, van Campen DH, Reneman RS. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics. J Biomech. 1994;27(7):941–51.CrossRefPubMedGoogle Scholar
  78. 78.
    Buckberg GD, Coghlan HC, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. V. Anatomic and physiologic considerations in the healthy and failing heart. Semin Thorac Cardiovasc Surg. 2001;13(4):358–85.CrossRefPubMedGoogle Scholar
  79. 79.
    Mirsky I, Parmley WW. Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ Res. 1973;33(2):233–43.CrossRefPubMedGoogle Scholar
  80. 80.
    Ho SY, Sánchez-Quintana D. The importance of atrial structure and fibers. Clin Anat. 2009;22:52–63.  https://doi.org/10.1002/ca.20634.CrossRefPubMedGoogle Scholar
  81. 81.
    Ferrer A, Sebastián R, Sánchez-Quintana D, Rodríguez JF, Godoy EJ, Martínez L, Saiz J. Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation. PLoS One. 2015;10(11):e0141573.  https://doi.org/10.1371/journal.pone.0141573.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Pashakhanloo F, Herzka DA, Ashikaga H, Mori S, Gai N, Bluemke DA, Trayanova NA, McVeigh ER. Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circ Arrhythm Electrophysiol. 2016;9(4):e004133.  https://doi.org/10.1161/CIRCEP.116.004133.CrossRefPubMedGoogle Scholar
  83. 83.
    Anderson B. Chapter 2: ventricular systolic function. In: Anderson B, editor. A sonographer’s guide to the assessment of heart disease. Sydney: MGA Graphics; 2014. p. 24. www.echotext.info. ISBN:9780992322205.Google Scholar
  84. 84.
    Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH. Left ventricular fibre architecture in man. Br Heart J. 1981;45(3):248–63.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H. Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg. 2005;27(2):191–201.  https://doi.org/10.1016/j.ejcts.2004.11.026.CrossRefPubMedGoogle Scholar
  86. 86.
    Sheehan F, Redington A. The right ventricle: anatomy, physiology and clinical imaging. Heart. 2008;94(11):1510–5.  https://doi.org/10.1136/hrt.2007.132779.CrossRefPubMedGoogle Scholar
  87. 87.
    Bleeker GB, Steendijk P, Holman ER, CM Y, Breithardt OA, Kaandorp TA, Schalij MJ, van der Wall EE, Nihoyannopoulos P, Bax JJ. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart. 2006;92(Suppl 1):i19–26.  https://doi.org/10.1136/hrt.2005.082503.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kaul S. The interventricular septum in health and disease. Am Heart J. 1986;112:568–81.CrossRefPubMedGoogle Scholar
  89. 89.
    Lindqvist P, Morner S, Karp K, Waldenstrom A. New aspects of septal function by using 1-dimensional strain and strain rate imaging. J Am Soc Echocardiogr. 2006;19:1345–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Klima U, Guerrero JL, Vlahakes GJ. Contribution of the interventricular septum to maximal right ventricular function. Eur J Cardiothorac Surg. 1998;14:250–5.CrossRefPubMedGoogle Scholar
  91. 91.
    Buckberg G, Athanasuleas C, Saleh S. Septal myocardial protection during cardiac surgery for prevention of right ventricular dysfunction. Anatol J Cardiol. 2008;8(suppl 2):108–16.Google Scholar
  92. 92.
    Woods RH. A few applications of a physical theorem to membranes in the human body in a state of tension. Trans R Acad Med Ireland. 1892;10:417–27.  https://doi.org/10.1007/BF03171228.CrossRefGoogle Scholar
  93. 93.
    Hou Y, Crossman DJ, Rajagopal V, Baddeley D, Jayasinghe I, Soeller C. Super-resolution fluorescence imaging to study cardiac biophysics: α-actinin distribution and z-disk topologies in optically thick cardiac tissue slices. Prog Biophys Mol Biol. 2014;115:328–39.  https://doi.org/10.1016/j.pbiomolbio.2014.07.003.CrossRefPubMedGoogle Scholar
  94. 94.
    Rajagopal V, et al. Examination of the effects of heterogeneous organization of RyR clusters, myofibrils and mitochondria on Ca2+ release patterns in cardiomyocytes. PLoS Comput Biol. 2015;11:e1004417.  https://doi.org/10.1371/journal.pcbi.1004417.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chabiniok R, Wang VY, Hadjicharalambous M, Asner L, Lee J, Sermesant M, Kuhl E, Young AA, Moireau P, Nash MP, Chapelle D, Nordsletten DA. Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus. 2016;6(2):20150083.  https://doi.org/10.1098/rsfs.2015.0083.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Opie LH. Heart physiology: from cell to circulation. Philadelphia: Lippincott Williams and Wilkins; 2004.Google Scholar
  97. 97.
    May-Newman K, Omens JH, Pavelec RS, McCulloch AD. Three-dimensional transmural mechanical interaction between the coronary vasculature and passive myocardium in the dog. Circ Res. 1994;74:1166–78.  https://doi.org/10.1161/01.RES.74.6.1166.CrossRefPubMedGoogle Scholar
  98. 98.
    Reeve AM, Nash MP, Taberner AJ, Nielsen PM. Constitutive relations for pressure-driven stiffening in poroelastic tissues. J Biomech Eng. 2014;136:081011.  https://doi.org/10.1115/1.4027666.CrossRefGoogle Scholar
  99. 99.
    Chapelle D, Gerbeau J-F, Sainte-Marie J, Vignon-Clementel I. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech. 2010;46:91–101.  https://doi.org/10.1007/s00466-009-0452-x.CrossRefGoogle Scholar
  100. 100.
    Michler C, et al. A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model. Int J Numer Methods Biomed Eng. 2013;29:217–32.  https://doi.org/10.1002/cnm.2520.CrossRefGoogle Scholar
  101. 101.
    Lee J, Cookson A, Chabiniok R, Rivolo S, Hyde E, Sinclair M, Michler C, Sochi T, Smith N. Multiscale modelling of cardiac perfusion. In: Quarteroni A, editor. Modeling the heart and the circulatory system. Basel: Springer; 2015. p. 51–96.Google Scholar
  102. 102.
    Buckberg G, Hoffman JI. Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum. J Thorac Cardiovasc Surg. 2014;148(6):3166–71.e1.  https://doi.org/10.1016/j.jtcvs.2014.05.044.CrossRefPubMedGoogle Scholar
  103. 103.
    Loukas M, Aly I, Tubbs RS, Anderson RH. The naming game: a discrepancy among the medical community. Clin Anat. 2016;29:285–9.  https://doi.org/10.1002/ca.22666.CrossRefPubMedGoogle Scholar
  104. 104.
    Saremi F, Pourzand L, Krishnan S, et al. Right atrial cavotricuspid isthmus: anatomic characterization with multi-detector row CT. Radiology. 2008;247(3):658–68.  https://doi.org/10.1148/radiol.2473070819.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mircea Ifrim
    • 1
  • Ecaterina Bontaş
    • 2
  • Daniel Cochior
    • 3
    • 4
  • Ion C. Ţintoiu
    • 5
    • 6
  1. 1.Academy of Medical SciencesBucureştiRomania
  2. 2.Department of Cardiology“Prof. C.C. Iliescu” Emergency Institute for Cardiovascular DiseasesBucharestRomania
  3. 3.Department of MedicineTitu Maiorescu UniversityBucharestRomania
  4. 4.Academic Integration, Department of Surgery and ResearchHospital MonzaBucharestRomania
  5. 5.Department of Cardiology“Titu Maiorescu” University- Department of Medicine of BucharestBucharestRomania
  6. 6.Center for Cardiovascular Diseases“Carol Davila” Central Military Emergency University HospitalBucharestRomania

Personalised recommendations