Essential in Genetic Etiology of Congenital Heart Diseases

  • Mariana Jinga
  • Silviu Dumitrescu
  • Liviu Stan
  • Ecaterina Bontaş
  • Tudor Păduraru
  • Ion C. Ţintoiu
  • Vasile Murgu
  • Rabia Denis El Zoabi


Congenital heart disease (CHD) represent another unsolved problem of the present, although new techniques of exploration like fluorescence in situ hybridization (FISH), high resolution array-comparative genomic hybridization (array-CGH), single nucleotide polymorphisms (SNPs), comparative genomic hybridization (CGH) and spectral karyotyping (SKY) explain some genetic mechanisms implied in the genesis of this pathology. However, there are many unresolved issues. Structural modifications of chromosomes by duplication and also by deletion determine variable phenotypes depending on the altered structural site. Given that, the genetic defect affects only one gene or more but determines repercussions over the cardiac anatomy or/and other non-cardiac systems, as a result the phenotype can be syndromic or nonsyndromic. The raised or low number of chromosomes was the first explanation for CHD. Trisomy 21 (Down’s syndrome), 18 (Edward’s syndrome), 13 (Patau’s syndrome), monosomy X (Turner’s syndrome), deletion at chromosome 7q11.23 and 22q11.2, multiple gene mutations, are the most frequent chromosomal or sub-chromosomal destructuring along with syndromic phenotype. Copy number variations (CNVs) is defined as sub-chromosomal mechanism that by deletion or multiplication produces in general nonsyndromic phenotype. Transcription factors T-Box protein 5 (TBX5), mNK2 Homeobox 5 (NKX2.5), GATA-binding protein 4 (GATA4) are specific proteins that sending information from DNA to RNA messenger can undergo structural denaturations and if this happens these proteins cannot send correct messages resulting in alteration of the normal chain of cardiogenesis. Combination between these mechanisms and unitary action produce CHD in different forms, syndromic or nonsyndromic.


Chromosome abnormality Gene defects Syndromic Nonsyndromic Duplication Deletion Congenital heart diseases Developmental delay 


  1. 1.
    Centers for Disease Control and Prevention (CDC). Hospital stays, hospital charges, and in-hospital deaths among infants with selected birth defects–United States, 2003. MMWR Morb Mortal Wkly Rep. 2007;56:25–9.Google Scholar
  2. 2.
    Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.CrossRefGoogle Scholar
  3. 3.
    Cowan JR, Ware SM. Genetics and genetic testing in congenital heart disease. Clin Perinatol. 2015;42(2):373–93, ix. Scholar
  4. 4.
    Bajolle F, Zaffran S, Bonnet D. Genetics and embryological mechanisms of congenital heart diseases. Arch Cardiovasc Dis. 2009;102(1):59–63. Scholar
  5. 5.
    Huang J, Liang J. Molecular mechanisms of congenital heart disease. In: Syamasundar Rao P, editor. Congenital heart disease - selected aspects. InTech; 2012. Available from Under CC BY 3.0 license.Google Scholar
  6. 6.
    Akhirome E, Walton NA, Nogee JM, Jay PY. The complex genetic basis of congenital heart defects. Circ J. 2017;81(5):629–34. Scholar
  7. 7.
    Nora JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic-environmental interaction. Circulation. 1968;38:604–17.CrossRefPubMedGoogle Scholar
  8. 8.
    Ferencz C, Neill CA, Boughman JA, Rubin JD, Brenner JI, Perry LW. Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J Pediatr. 1989;114:79–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Hartman RJ, Rasmussen SA, Botto LD, Riehle-Colarusso T, Martin CL, Cragan JD, et al. The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol. 2011;32:1147–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Glessner JT, Bick AG, Ito K, Homsy JG, Rodriguez-Murillo L, Fromer M, et al. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 2014;115:884–96.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–3.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350:1262–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48:1060–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bejjani BA, Shaffer LG. Clinical utility of contemporary molecular cytogenetics. Annu Rev Genomics Hum Genet. 2008;9:71–86.CrossRefPubMedGoogle Scholar
  15. 15.
    Chung IM, Rajakumar G. Genetics of congenital heart defects: the NKX2-5 gene, a key player. Genes (Basel). 2016;7(2):E6. Scholar
  16. 16.
    Pierpont ME, Basson CT, Benson DW, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL. Genetic basis for congenital heart defects: current knowledge, a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38. Scholar
  17. 17.
    Pierpont MEM, Moller JH. Chromosomal abnormalities. In: Pierpont MEM, Moller JH, editors. The genetics of cardiovascular disease. Boston: Nijhoff; 1987. p. 13–24.CrossRefGoogle Scholar
  18. 18.
    Zollino M, Di Stefano C, Zampino G, Mastroiacovo P, Wright TJ, Sorge G, Selicorni A, Tenconi R, Zappala A, Battaglia A, Di Rocco M, Palka G, Pallotta R, Altherr MR, Neri G. Genotype-phenotype correlations and clinical diagnostic criteria in Wolf-Hirschhorn syndrome. Am J Med Genet. 2000;94:254–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Wilkins LE, Brown JA, Nance WE, Wolf B. Clinical heterogeneity in 80 home-reared children with cri du chat syndrome. J Pediatr. 1983;102:528–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Pierpont MEM. Genetic etiology of cardiac syndromes. Prog Pediatr Cardiol. 1996;6:29–41.CrossRefGoogle Scholar
  21. 21.
    Eronen M, Peippo M, Hiippala A, Raatikka M, Arvio M, Johansson R, Kahkonen M. Cardiovascular manifestations in 75 patients with Williams syndrome. J Med Genet. 2002;39:554–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bruno E, Rossi N, Thuer O, Cordoba R, Alday LE. Cardiovascular findings, and clinical course, in patients with Williams syndrome. Cardiol Young. 2003;13:532–6.PubMedGoogle Scholar
  23. 23.
    Wu YQ, Sutton VR, Nickerson E, Lupski JR, Potocki L, Korenberg JR, Greenberg F, Tassabehji M, Shaffer LG. Delineation of the common critical region in Williams syndrome and clinical correlation of growth, heart defects, ethnicity, and parental origin. Am J Med Genet. 1998;78:82–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Riccardi VM. Trisomy 8: an international study of 70 patients. Birth Defects Orig Artic Ser. 1977;13:171–84.PubMedGoogle Scholar
  25. 25.
    Fineman RM, Ablow RC, Howard RO, Albright J, Breg WR. Trisomy 8 mosaicism syndrome. Pediatrics. 1975;56:762–7.PubMedGoogle Scholar
  26. 26.
    Berry AC, Mutton DE, Lewis DG. Mosaicism and the trisomy 8 syndrome. Clin Genet. 1978;14:105–14.CrossRefPubMedGoogle Scholar
  27. 27.
    De Michelena MI, Sanchez R, Munoz P, Cabello E, Rojas P, de Olazaval E. Trisomy 8: an additional case with unique manifestations [published correction appears in Am J Med Genet. 1993;46:605]. Am J Med Genet. 1992;43:697–700.CrossRefPubMedGoogle Scholar
  28. 28.
    Dobyns WB, Dewald GW, Carlson RO, Mair DD, Michels VV. Deficiency of chromosome 8p21.1–8pter: case report and review of the literature. Am J Med Genet. 1985;22:125–34. Scholar
  29. 29.
    Digilio MC, Marino B, Guccione P, Giannotti A, Mingarelli R, Dallapiccola B. Deletion 8p syndrome. Am J Med Genet. 1998;75:534–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Marino B, Reale A, Giannotti A, Digilio MC, Dallapiccola B. Nonrandom association of atrioventricular canal and del (8p) syndrome. Am J Med Genet. 1992;42:424–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Wooldridge J, Zunich J. Trisomy 9 syndrome: report of a case with Crohn disease and review of the literature. Am J Med Genet. 1995;56:258–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Shapira M, Borochowitz Z, Bar-El H, Dar H, Etzioni A, Lorber A. Deletion of the short arm of chromosome 10 (10p13): report of a patient and review. Am J Med Genet. 1994;52:34–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Monaco G, Pignata C, Rossi E, Mascellaro O, Cocozza S, Ciccimarra F. DiGeorge anomaly associated with 10p deletion. Am J Med Genet. 1991;39:215–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A. 2004;129:51–61.CrossRefGoogle Scholar
  35. 35.
    Wyllie JP, Wright MJ, Burn J, Hunter S. Natural history of trisomy 13. Arch Dis Child. 1994;71:343–5.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Benacerraf BR, Miller WA, Frigoletto FD Jr. Sonographic detection of fetuses with trisomies 13 and 18: accuracy and limitations. Am J Obstet Gynecol. 1988;158:404–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Van Praagh S, Truman T, Firpo A, Bano-Rodrigo A, Fried R, McManus B, Engle MA, Van Praagh R. Cardiac malformations in trisomy-18: a study of 41 postmortem cases. J Am Coll Cardiol. 1989;13:1586–97.CrossRefPubMedGoogle Scholar
  38. 38.
    Matsuoka R, Misugi K, Goto A, Gilbert EF, Ando M. Congenital heart anomalies in the trisomy 18 syndrome, with reference to congenital polyvalvular disease. Am J Med Genet. 1983;14:657–68.CrossRefPubMedGoogle Scholar
  39. 39.
    McElhinney DB, Krantz ID, Bason L, Piccoli DA, Emerick KM, Spinner NB, Goldmuntz E. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation. 2002;106:2567–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr. 1987;110:195–200.CrossRefPubMedGoogle Scholar
  41. 41.
    Pueschel SM. Clinical aspects of Down syndrome from infancy to adulthood. Am J Med Genet Suppl. 1990;7:52–6.PubMedGoogle Scholar
  42. 42.
    Goldhaber SZ, Rubin IL, Brown W, Robertson N, Stubblefield F, Sloss LJ. Valvular heart disease (aortic regurgitation and mitral valve prolapse) among institutionalized adults with Down’s syndrome. Am J Cardiol. 1986;57:278–81.CrossRefPubMedGoogle Scholar
  43. 43.
    Goldhaber SZ, Brown WD, Sutton MG. High frequency of mitral valve prolapse and aortic regurgitation among asymptomatic adults with Down’s syndrome. JAMA. 1987;258:1793–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Freeman SB, Taft LF, Dooley KJ, Allran K, Sherman SL, Hassold TJ, Khoury MJ, Saker DM. Population-based study of congenital heart defects in Down syndrome. Am J Med Genet. 1998;80:213–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Hijii T, Fukushige J, Igarashi H, Takahashi N, Ueda K. Life expectancy and social adaptation in individuals with Down syndrome with and without surgery for congenital heart disease. Clin Pediatr (Phila). 1997;36:327–32.CrossRefGoogle Scholar
  46. 46.
    Kallen B, Mastroiacovo P, Robert E. Major congenital malformations in Down syndrome. Am J Med Genet. 1996;65:160–6.CrossRefPubMedGoogle Scholar
  47. 47.
    McDonald-McGinn DM, Kirschner R, Goldmuntz E, Sullivan K, Eicher P, Gerdes M, Moss E, Solot C, Wang P, Jacobs I, Handler S, Knightly C, Heher K, Wilson M, Ming JE, Grace K, Driscoll D, Pasquariello P, Randall P, Larossa D, Emanuel BS, Zackai EH. The Philadelphia story: the 22q11.2 deletion: report on 250 patients. Genet Couns. 1999;10:11–24.PubMedGoogle Scholar
  48. 48.
    Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H, Schuffenhauer S, Oechsler H, Belohradsky B, Prieur M, Aurias A, Raymond FL, Clayton-Smith J, Hatchwell E, McKeown C, Beemer FA, Dallapiccola B, Novelli G, Hurst JA, Ignatius J, Green AJ, Winter RM, Brueton L, Brondum-Nielsen K, Stewart F, Van Essen T, Patton M, Paterson J, Scambler PJ. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet. 1997;34:798–804.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lin AE, Lippe BM, Geffner ME, Gomes A, Lois JF, Barton CW, Rosenthal A, Friedman WF. Aortic dilation, dissection, and rupture in patients with turner syndrome. J Pediatr. 1986;109:820–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Natowicz M, Kelley RI. Association of Turner syndrome with hypoplastic left-heart syndrome. Am J Dis Child. 1987;141:218–20.PubMedGoogle Scholar
  51. 51.
    Mazzanti L, Cacciari E. Congenital heart disease in patients with Turner’s syndrome: Italian Study Group for Turner Syndrome (ISGTS). J Pediatr. 1998;133:688–92.CrossRefPubMedGoogle Scholar
  52. 52.
    Lin AE, Lippe B, Rosenfeld RG. Further delineation of aortic dilation, dissection, and rupture in patients with Turner syndrome. Pediatrics. 1998;102:e12.CrossRefPubMedGoogle Scholar
  53. 53.
    Prandstraller D, Mazzanti L, Picchio FM, Magnani C, Bergamaschi R, Perri A, Tsingos E, Cacciari E. Turner’s syndrome: cardiologic profile according to the different chromosomal patterns and long-term clinical follow-up of 136 nonpreselected patients. Pediatr Cardiol. 1999;20:108–12.CrossRefPubMedGoogle Scholar
  54. 54.
    Visootsak J, Aylstock M, Graham JM Jr. Klinefelter syndrome and its variants: an update and review for the primary pediatrician. Clin Pediatr. 2001;40:639–51.CrossRefGoogle Scholar
  55. 55.
    Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet. 2004;5:725–38.CrossRefPubMedGoogle Scholar
  56. 56.
    Bondy CA. Turner syndrome 2008. Horm Res. 2009;71(Suppl 1):52–6.PubMedGoogle Scholar
  57. 57.
    Pont SJ, Robbins JM, Bird TM, Gibson JB, Cleves MA, Tilford JM, Aitken ME. Congenital malformations among liveborn infants with trisomies 18 and 13. Am J Med Genet A. 2006;140:1749–56.CrossRefPubMedGoogle Scholar
  58. 58.
    Bassett AS, Scherer SW, Brzustowicz LM. Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease. Am J Psychiatry. 2010;167(8):899–914. Scholar
  59. 59.
    Lee C, Scherer SW. The clinical context of copy number variation in the human genome. Expert Rev Mol Med. 2010;12:e8. Scholar
  60. 60.
    Costain G, Silversides CK, Bassett AS. The importance of copy number variation in congenital heart disease. NPJ Genom Med. 2016;1:16031. Scholar
  61. 61.
    Richards AA, Santos LJ, Nichols HA, Crider BP, Elder FF, Hauser NS, Zinn AR, Garg V. Cryptic chromosomal abnormalities identified in children with congenital heart disease. Pediatr Res. 2008;64(4):358–63. Scholar
  62. 62.
    Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112:707–20.CrossRefPubMedGoogle Scholar
  63. 63.
    Soemedi R, Wilson IJ, Bentham J, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012;91:489–501.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41:931–5.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, Yuen T, Rickaby J, Thiruvahindrapuram B, Marshall CR, Scherer SW, Bassett AS. Rare copy number variations in adults with tetralogy of fallot implicate novel risk gene pathways. PLoS Genet. 2012;8:e1002843.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Christiansen J, Dyck JD, Elyas BG, Lilley M, Bamforth JS, Hicks M, Sprysak KA, Tomaszewski R, Haase SM, Vicen-Wyhony LM, Somerville MJ. Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease. Circ Res. 2004;94:1429–35.CrossRefPubMedGoogle Scholar
  67. 67.
    Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, Harris KD, Goetsch MA, Simpson PM, Bick DP, Broeckel U, Pelech AN, Tweddell JS, Mitchell ME. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012;44:518–41.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Luo C, Yang YF, Yin BL, Chen JL, Huang C, Zhang WZ, Wang J, Zhang H, Yang JF, Tan ZP. Microduplication of 3p25.2 encompassing RAF1 associated with congenital heart disease suggestive of Noonan syndrome. Am J Med Genet A. 2012;158A:1918–23.CrossRefPubMedGoogle Scholar
  69. 69.
    Erdogan F, Larsen LA, Zhang L, Tumer Z, Tommerup N, Chen W, Jacobsen JR, Schubert M, Jurkatis J, Tzschach A, Ropers HH, Ullmann R. High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J Med Genet. 2008;45:704–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Priest JR, Girirajan S, Vu TH, Olson A, Eichler EE, Portman MA. Rare copy number variants in isolated sporadic and syndromic atrioventricular septal defects. Am J Med Genet A. 2012;158A(6):1279–84.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Latchman DS. Transcription factors: an overview. Int J Biochem Cell Biol. 1997;29(12):1305–12.CrossRefPubMedGoogle Scholar
  72. 72.
    Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 2000;34:77–137. Scholar
  73. 73.
    Nikolov DB, Burley SK. RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci U S A. 1997;94(1):15–22.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Roeder RG. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci. 1996;21(9):327–35.CrossRefPubMedGoogle Scholar
  75. 75.
    Karin M. Too many transcription factors: positive and negative interactions. New Biol. 1990;2(2):126–31.PubMedGoogle Scholar
  76. 76.
    Kloesel B, DiNardo JA, Body SC. Cardiac embryology and molecular mechanisms of congenital heart disease: a primer for anesthesiologists. Anesth Analg. 2016;123(3):551–69. Scholar
  77. 77.
    Fahed AC, Nemer GM. Genetic causes of syndromic and non-syndromic congenital heart disease. In: Cooper D, editor. Mutations in human genetic disease. InTech; 2012. Available from
  78. 78.
    Richards AA, Garg V. Genetics of congenital heart disease. Curr Cardiol Rev. 2010;6(2):91–7. Scholar
  79. 79.
    Wilsdon A, Sifrim A, Hitz MP, Hurles M, Brook JD. Recent advances in congenital heart disease genomics. F1000Res. 2017;6:869. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mariana Jinga
    • 1
    • 2
  • Silviu Dumitrescu
    • 3
  • Liviu Stan
    • 4
  • Ecaterina Bontaş
    • 5
  • Tudor Păduraru
    • 6
  • Ion C. Ţintoiu
    • 3
  • Vasile Murgu
    • 7
  • Rabia Denis El Zoabi
    • 7
  1. 1.“Carol Davila” University of Medicine and PharmacyBucharestRomania
  2. 2.“Carol Davila” Central Military Emergency University HospitalBucharestRomania
  3. 3.Department of Interventional Cardiology“Carol Davila” Central Military Emergency University HospitalBucharestRomania
  4. 4.Department of Cardiovascular SurgeryCentral Clinic Emergency Military Hospital “Carol Davila”BucharestRomania
  5. 5.Department of Cardiology“Prof. C.C. Iliescu” Emergency Institute for Cardiovascular DiseasesBucharestRomania
  6. 6.Department of Anesthesiology“Carol Davila” Central Military Emergency University HospitalBucharestRomania
  7. 7.Department of Medicine“Titu Maiorescu” UniversityBucharestRomania

Personalised recommendations