Advertisement

Heart Embryology: Overview

  • Florentina Radu-Ioniţă
  • Ecaterina Bontaş
  • Viorel Goleanu
  • Bogdan Cîrciumaru
  • Daniela Bartoş
  • Irinel Parepa
  • Ion C. Ţintoiu
  • Adrian Popa
Chapter

Abstract

Human heart has a complex embryological development process driven by genetic mechanisms that have successive and unitary progression in a global context together with other developments of organogenesis. The first elements of cardiogenesis occur prematurely from mesoderm where cellular differentiation at this level acquires cardiogenic specificity by creating the first heart field. From this stage, cellular multiplication is specific for myocardial, endothelial, and smooth muscle cells through the second heart field. Accordingly to up-to-date evidence, the mechanisms of this process are genetically coordinated mainly by NKX2.5, GATA4, Mef2, TBX5 and Hand which establish not only the structure of the embryonic cord but also the sequential evolution of the differentiation and completion of the cardiac structures including the inlet and outlet paths. First field and second field are the initial particular stages of cardiogenesis. In the primary heart tube, the differentiation into adult anatomical cardiac structures (the atrial and ventricular cavities) begins. The heart tube looping initiates the separation of the primitive atria, ventricle and outflow tract. The separation between these cavities is made by different but concordant mechanisms. Coronarogenesis is the last stage before embryonic heart becomes functional.

Keywords

Cardiogenesis Cardiac morphogenesis Normal heart development First and second heart fields Linear and looped tube separation Jonctional differentiation Angiogenesis Conduction system 

References

  1. 1.
    Kloesel B, DiNardo JA, Body SC. Cardiac embryology and molecular mechanisms of congenital heart disease: a primer for anesthesiologists. Anesth Analg. 2016;123:551–69.  https://doi.org/10.1213/ANE.00000000000014.
  2. 2.
    Schleich JM, Abdulla T, Summers R, Houyel L. An overview of cardiac morphogenesis. Arch Cardiovasc Dis. 2013;106:612–23.  https://doi.org/10.1016/j.acvd.2013.07.001.CrossRefPubMedGoogle Scholar
  3. 3.
    Epstein JA, Franklin H. Epstein lecture. Cardiac development and implications for heart disease. N Engl J Med. 2010;363:1638–47.  https://doi.org/10.1056/NEJMra1003941.CrossRefPubMedGoogle Scholar
  4. 4.
    Olson EN, Srivastava D. Molecular pathways controlling heart development. Science. 1996;272:671–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JB, Evans T. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem. 1994;269:23177–84.PubMedGoogle Scholar
  6. 6.
    Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006;313:1922–7.  https://doi.org/10.1126/science.1132292.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kussman BD, Miller-Hance WC. Chapter 4. Development of the cardiovascular system and nomenclature for congenital heart disease. In: Andropoulos DB, Stayer SA, Mossad EB, Miller-Hance WC, editors. Anesthesia for congenital heart disease. 3rd ed. Massachusetts: Wiley-Blackwell; 2015. p. 43.Google Scholar
  8. 8.
    Hutchins GM, Kessler-Hanna A, Moore GW. Development of the coronary arteries in the embryonic human heart. Circulation. 1988;77:1250–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5:877–89.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chalajour F, Ma X, Kirk Riemer R. Myocardial self-repair and congenital heart disease, congenital heart disease - selected aspects. In: Syamasundar Rao P, editor. InTech; 2012. doi: https://doi.org/10.5772/26368. https://www.intechopen.com/books/congenital-heart-disease-selected-aspects/myocardial-self-repair-and-congenital-heart-disease.
  11. 11.
    Gittenberger-de Groot AC, Bartelings MM, Poelmann RE, Haak MC, Jongbloed MR. Embryology of the heart and its impact on understanding fetal and neonatal heart disease. Semin Fetal Neonatal Med. 2013;18:237–44.  https://doi.org/10.1016/j.siny.2013.04.008.CrossRefPubMedGoogle Scholar
  12. 12.
    Martin PS, Kloesel B, Norris RA, Lindsay M, Milan D, Body SC. Embryonic development of the bicuspid aortic valve. J Cardiovasc Dev Dis. 2015;2:248–72.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol. 2014;5:318.  https://doi.org/10.3389/fphys.2014.00318.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ward C, Stadt H, Hutson M, Kirby ML. Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol. 2005;284:72–83.  https://doi.org/10.1016/j.ydbio.2005.05.003.CrossRefPubMedGoogle Scholar
  15. 15.
    Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6:826–35.  https://doi.org/10.1038/nrg1710.CrossRefPubMedGoogle Scholar
  16. 16.
    Gittenberger-de Groot AC, Bartelings MM, Deruiter MC, Poelmann RE. Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res. 2005;57:169–76.  https://doi.org/10.1203/01.PDR.0000148710.69159.61.CrossRefPubMedGoogle Scholar
  17. 17.
    Moorman A, Webb S, Brown NA, Lamers W, Anderson RH. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart. 2003;89:806–14.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002;3:544–56.  https://doi.org/10.1038/nrg843.CrossRefPubMedGoogle Scholar
  19. 19.
    Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006;126:1037–48.  https://doi.org/10.1016/j.cell.2006.09.003.CrossRefPubMedGoogle Scholar
  20. 20.
    Vincentz JW, Barnes RM, Firulli AB. Hand factors as regulators of cardiac morphogenesis and implications for congenital heart defects. Birth Defects Res A Clin Mol Teratol. 2011;91:485–94.  https://doi.org/10.1002/bdra.20796.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Franco D, Meilhac SM, Christoffels VM, Kispert A, Buckingham M, Kelly RG. Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart. Dev Biol. 2006;294:366–75.  https://doi.org/10.1016/j.ydbio.2006.02.045.CrossRefPubMedGoogle Scholar
  22. 22.
    Van Mierop LH, Kutsche LM. Development of the ventricular septum of the heart. Heart Vessel. 1985;1:114–9.CrossRefGoogle Scholar
  23. 23.
    Patten BM. The heart. Patten’s foundations of embryology. New York: McGraw-Hill; 1954. p. 545–69.Google Scholar
  24. 24.
    Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (2) septation of the atriums and ventricles. Heart. 2003;89:949–58.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wessels A, Markman MW, Vermeulen JL, Anderson RH, Moorman AF, Lamers WH. The development of the atrioventricular junction in the human heart. Circ Res. 1996;78:110–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Van Gils FAW. The development of the human atrioventricular heart valves. J Anat. 1979;128:427.Google Scholar
  27. 27.
    Lockhart MM, Phelps AL, van den Hoff MJ, Wessels A. The epicardium and the development of the atrioventricular junction in the murine heart. J Dev Biol. 2014;2:1–17.  https://doi.org/10.3390/jdb2010001.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat. 1977;148:85–119.  https://doi.org/10.1002/aja.1001480108.CrossRefPubMedGoogle Scholar
  29. 29.
    Lockhart MM, van den Hoff M, Wessels A. The role of the epicardium in the formation of the cardiac valves in the mouse. In: Nakanishi T, Markwald RR, Baldwin HS, Keller BB, Srivastava D, Yamagishi H, editors. Etiology and morphogenesis of congenital heart disease from gene function and cellular interaction to morphology. Tokyo: Springer; 2016. p. 161–7.  https://doi.org/10.1007/978-4-431-54628-3.CrossRefGoogle Scholar
  30. 30.
    Snarr BS, Wirrig EE, Phelps AL, Trusk TC, Wessels A. A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development. Dev Dyn. 2007;236:1287–94.  https://doi.org/10.1002/dvdy.21074.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Markwald RR, Norris RA, Moreno-Rodriguez R, Levine RA. Developmental basis of adult cardiovascular diseases: valvular heart diseases. Ann N Y Acad Sci. 2010;1188:177–83.  https://doi.org/10.1111/j.1749-6632.2009.05098.x.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lamers WH, Virágh S, Wessels A, Moorman AF, Anderson RH. Formation of the tricuspid valve in the human heart. Circulation. 1995;91:111–21.CrossRefPubMedGoogle Scholar
  33. 33.
    de Lange FJ, Moorman AF, Anderson RH, Männer J, Soufan AT, de Gier-de Vries C, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM. Lineage and morphogenetic analysis of the cardiac valves. Circ Res. 2004;95:645–54.  https://doi.org/10.1161/01.RES.0000141429.13560.cb.CrossRefPubMedGoogle Scholar
  34. 34.
    Restivo A, Piacentini G, Placidi S, Saffirio C, Marino B. Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart. Anat Rec A Discov Mol Cell Evol Biol. 2006;288:936–43.  https://doi.org/10.1002/ar.a.20367.CrossRefPubMedGoogle Scholar
  35. 35.
    Milos NC, Nordstrom DB, Ongaro I, Chow AK. Variations in structure of the outflow tract of the human embryonic heart: a new hypothesis for generating bicuspid aortic semilunar valves. Ann Anat. 2017;211:88–103.  https://doi.org/10.1016/j.aanat.2016.12.004.CrossRefPubMedGoogle Scholar
  36. 36.
    Bajolle F, Zaffran S, Kelly RG, Hadchouel J, Bonnet D, Brown NA, Buckingham ME. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res. 2006;98(3):421–8.  https://doi.org/10.1161/01.RES.0000202800.85341.6e.CrossRefPubMedGoogle Scholar
  37. 37.
    Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. Wiley Interdiscip Dev Biol. 2013;2:499–530.  https://doi.org/10.1002/wdev.98.CrossRefGoogle Scholar
  38. 38.
    Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, Abu-Issa R, Kirby ML. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol. 2005;281:78 90.  https://doi.org/10.1016/j.ydbio.2005.02.012.CrossRefPubMedGoogle Scholar
  39. 39.
    Van Mierop LH, Alley RD, Kausel HW, Stranahan A. Pathogenesis of transposition complexes. I. Embryology of the ventricles and great arteries. Am J Cardiol. 1963;12:216–25.CrossRefGoogle Scholar
  40. 40.
    Icardo JM. Development of the outflow tract. A study in hearts with situs solitus and situs inversus. Ann N Y Acad Sci. 1990;588:26–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Bartelings MM. The outflow tract of the heart embryologic and morphologic correlations. Ph.D. thesis. The Netherlands: University of Leiden; 1990. doi:10.1046/j.1469-7580.2003.00168.x.Google Scholar
  42. 42.
    Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK. Septation and separation within the outflow tract of the developing heart. J Anat. 2003;202:327–42.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wirrig EE, Yutzey KE. Conserved transcriptional regulatory mechanisms in aortic valve development and disease. Arterioscler Thromb Vasc Biol. 2014;34:737–41.  https://doi.org/10.1161/ATVBAHA.113.302071.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wu B, Zhang Z, Lui W, Chen X, Wang Y, Chamberlain AA, Moreno-Rodriguez RA, Markwald RR, O’Rourke BP, Sharp DJ, Zheng D, Lenz J, Baldwin HS, Chang CP, Zhou B. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151:1083–96.  https://doi.org/10.1016/j.cell.2012.10.023.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Reese DE, Mikawa T, Bader DM. Development of the coronary vessel system. Circ Res. 2002;91:761–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–53.  https://doi.org/10.1038/nature08873.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8:273–84.  https://doi.org/10.1007/s10456-005-9014-9.CrossRefPubMedGoogle Scholar
  48. 48.
    Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Zhang Z, Zhong TP, Yang X, Yang Z, Yan Y, Baldini A, Sun Y, Lu J, Schwartz RJ, Evans SM, Gittenberger-de Groot AC, Red-Horse K, Zhou B. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 2013;23:1075–90.  https://doi.org/10.1038/cr.2013.83.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gourdie RG, Mima T, Thompson RP, Mikawa T. Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development. 1995;121:1423–31.PubMedGoogle Scholar
  50. 50.
    Wenink AC. Development of the human cardiac conducting system. J Anat. 1976;121(Pt 3):617–31.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jongbloed MR, Mahtab EA, Blom NA, Schalij MJ, Gittenberger-de Groot AC. Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Sci World J. 2008;8:239–69.  https://doi.org/10.1100/tsw.2008.40.CrossRefGoogle Scholar
  52. 52.
    Miquerol L, Moreno-Rascon N, Beyer S, Dupays L, Meilhac SM, Buckingham ME, Franco D, Kelly RG. Biphasic development of the mammalian ventricular conduction system. Circ Res. 2010;107:153–61.  https://doi.org/10.1161/CIRCRESAHA.110.218156.CrossRefPubMedGoogle Scholar
  53. 53.
    Jensen B, Boukens BJ, Postma AV, Gunst QD, van den Hoff MJ, Moorman AF, Wang T, Christoffels VM. Identifying the evolutionary building blocks of the cardiac conduction system. PLoS One. 2012;7:e44231.  https://doi.org/10.1371/journal.pone.0044231.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223–67.  https://doi.org/10.1152/physrev.00006.2003.

Further Reading

  1. O-Rahilly R, Muller F. Developmental stages in human embryos. Washington: Carnegie Institute; 1987.Google Scholar
  2. Hutchins GM, Kessler-Hanna A, Moore GW. Development of the coronary arteries in the embryonic human heart. Circulation. 1988;77:1250–7.Google Scholar
  3. Oostra RJ, Steding G, Lamers WH, Moorman AFM, Steding S, Viragh S. Scanning electron microscopy atlas of the developing human heart. New York: Springer; 2007.Google Scholar
  4. Arráez-Aybar LA, Turrero-Nogués A, Marantos-Gamarra DG. Embryonic cardiac morphometry in Carnegie stages 15-23, from the Complutense University of Madrid Institute of Embryology Human Embryo Collection. Cells Tissues Organs. 2008;187:211–20. DOI:  https://doi.org/10.1159/000112212.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Florentina Radu-Ioniţă
    • 1
    • 2
  • Ecaterina Bontaş
    • 3
  • Viorel Goleanu
    • 4
  • Bogdan Cîrciumaru
    • 1
    • 5
  • Daniela Bartoş
    • 6
    • 7
  • Irinel Parepa
    • 8
  • Ion C. Ţintoiu
    • 9
    • 10
  • Adrian Popa
    • 3
  1. 1.“Titu Maiorescu” University of MedicineBucharestRomania
  2. 2.“Carol Davila” Central Military Emergency University HospitalBucharestRomania
  3. 3.Department of Cardiology“Prof. C.C. Iliescu”, Emergency Institute for Cardiovascular DiseasesBucharestRomania
  4. 4.Department of Cardiovascular Surgery“Dr. Agripa Ionescu” Military HospitalBucharestRomania
  5. 5.Infectious Diseases Department“Carol Davila” Central Military Emergency University HospitalBucharestRomania
  6. 6.Internal Medicine“Carol Davila” University of Medicine and PharmacyBucharestRomania
  7. 7.Internal Medicine DepartmentEmergency Hospital BucharestBucharestRomania
  8. 8.Department of Cardiology“Ovidiu” University Constanta, Emergency County HospitalConstantaRomania
  9. 9.Department of Medicine of Bucharest“Titu Maiorescu” UniversityBucharestRomania
  10. 10.Center for Cardiovascular Diseases“Carol Davila” Central Military Emergency University HospitalBucharestRomania

Personalised recommendations