Birds of Prey pp 325-337 | Cite as

Use of Drones for Research and Conservation of Birds of Prey

  • David CanalEmail author
  • Juan José Negro


In the last two decades, unmanned aircraft systems (UASs) have experienced an exponential development. Originally conceived for military use, technological advances and a dramatic reduction of prices are leading to widespread use of UASs in environmental disciplines including remote sensing, ecology, wildlife management or environmental monitoring (Chabot and Bird 2015; Linchant et al. 2015; Christie et al. 2016).


  1. Barasona JA, Mulero-Pázmány M, Acevedo P, Negro JJ, Torres MJ, Gortázar C, Vicente J (2014) Unmanned aircraft systems for studying spatial abundance of ungulates: relevance to spatial epidemiology. PLoS One 9:e115608. Available from CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beck JL, Terrance Booth D, Kennedy CL (2014) Assessing greater sage-grouse breeding habitat with aerial and ground imagery. Rangel Ecol Manag 67:328–332. Available from CrossRefGoogle Scholar
  3. Breckenridge RP, Dakins M, Bunting S, Harbour JL, White S (2011) Comparison of unmanned aerial vehicle platforms for assessing vegetation cover in sagebrush steppe ecosystems. Rangel Ecol Manag 64:521–532. Available from Accessed 8 Sept 2014CrossRefGoogle Scholar
  4. Canal D, Mulero-Pázmány M, Negro JJ, Sergio F (2016) Decoration increases the conspicuousness of raptor nests. PLoS One 11:e0157440. Available from CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chabot D, Bird DM (2012) Evaluation of an off-the-shelf unmanned aircraft system for surveying flocks of geese. Waterbirds 35:170–174. Available from CrossRefGoogle Scholar
  6. Chabot D, Bird DM (2015) Wildlife research and management methods in the 21st century: where do unmanned aircraft fit in? In: Proceedings of Robotics Science and Systems XI 3:137–155. Available from CrossRefGoogle Scholar
  7. Chabot D, Carignan V, Bird DM (2014) Measuring habitat quality for least bitterns in a created wetland with use of a small unmanned aircraft. Wetlands 34:527–533CrossRefGoogle Scholar
  8. Christiansen P, rild SKA, yholm JRN, Karstoft H (2014) Automated detection and recognition of wildlife using thermal cameras. Sensors (Basel, Switzerland) 14:13778–13793CrossRefGoogle Scholar
  9. Christie KS, Gilbert SL, Brown CL, Hatfield M, Hanson L (2016) Unmanned aircraft systems in wildlife research: current and future applications of a transformative technology. Front Ecol Environ 14:241–251CrossRefGoogle Scholar
  10. Cliff OM, Fitch R, Sukkarieh S, Saunders DL, Heinsohn R (2015) Online localization of radio-tagged wildlife with an autonomous aerial robot system. Robotics: Science and Systems (RSS) XI: 42Google Scholar
  11. Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97. International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Available from CrossRefGoogle Scholar
  12. Ditmer MA, Vincent JB, Werden LK, Tanner JC, Laske TG, Iaizzo PA, Garshelis DL, Fieberg JR (2015) Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr Biol 25:2278–2283. Elsevier Ltd. Available from CrossRefPubMedGoogle Scholar
  13. Dos Santos GAM et al (2015) Small unmanned aerial vehicle system for wildlife radio collar tracking. In: Proceedings – 11th IEEE international conference on Mobile Ad Hoc and Sensor Systems, MASS 2014:761–766Google Scholar
  14. Fandiño B, Pautasso A (2014) Distribution, natural history and conservation of Harpyhaliaetus coronatus (Birds: accipitridae) in central-East Argentina. Nat Neotrop 44:41–42CrossRefGoogle Scholar
  15. Ferguson-Lees J, Christie DA (2001) Raptors of the world. Helm Identification Guides, LondonGoogle Scholar
  16. Goebel ME, Perryman WL, Hinke JT, Krause DJ, Hann NA, Gardner S, LeRoi DJ (2015) A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol 38:619–630CrossRefGoogle Scholar
  17. Grenzdörffer GJ (2013) UAS-based automatic bird count of a common gull colony. Int Arch Photogramm Remote Sens XL:4–6Google Scholar
  18. Hodgson A, Kelly N, Peel D (2013) Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study. PLoS One 8:1–15Google Scholar
  19. Israel M (2012) A Uav-based roe deer fawn detection system. ISPRS – International Archives of the Photogrammetry, Remote Sens Spatial Inf Sci XXXVIII-1:51–55. Available from CrossRefGoogle Scholar
  20. Junda J, Greene E, Bird DM (2015) Proper flight technique for using a small rotary-winged drone aircraft to safely, quickly, and accurately survey raptor nests. J Unmanned Veh Syst 3:222–236. Available from CrossRefGoogle Scholar
  21. Junda JH, Greene E, Zazelenchuk D, Bird DM (2016) Nest defense behaviour of four raptor species (osprey, bald eagle, ferruginous hawk, and red-tailed hawk) to a novel aerial intruder – a small rotary-winged drone. J Unmanned Veh Syst 4:217–227. Available from CrossRefGoogle Scholar
  22. Körner F, Speck R, Göktoğan AH, Sukkarieh S (2010) Autonomous airborne wildlife tracking using radio signal strength. In: IEEE/RSJ 2010 international conference on Intelligent Robots and Systems, IROS 2010 – Conference Proceedings, pp 107–112Google Scholar
  23. Koski W, Gamage G, Davis A, Mathews T, LeBlanc B, Ferguson S (2015) Evaluation of UAS for photographic re-identification of bowhead whales, Balaena mysticetus. J Unmanned Veh Syst 3:22–29CrossRefGoogle Scholar
  24. Linchant J, Lisein J, Semeki J, Lejeune P, Vermeulen C (2015) Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev 45:239–252CrossRefGoogle Scholar
  25. Mulero-Pázmány M, Negro JJ, Ferrer M (2014a) A low cost way for assessing bird risk hazards in power lines: fixed-wing small unmanned aircraft systems. J Unmanned Veh Syst 2:5–15CrossRefGoogle Scholar
  26. Mulero-Pázmány M, Stolper R, van Essen LD, Negro JJ, Sassen T (2014b) Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PLoS One 9:e83873. Available from Accessed 26 May 2014CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mulero-Pázmány M, Barasona JÁ, Acevedo P, Vicente J, Negro JJ (2015) Unmanned aircraft systems complement biologging in spatial ecology studies. Ecol Evol 5:4808–4818CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mulero-Pázmány M, Jenni-Eiermann S, Strebel N, Sattler T, Negro JJ et al (2017) Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review. Plos One 12(6):e0178448. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Poole A (1989) Ospreys: a natural and unnatural history. Cambridge University Press, CambridgeGoogle Scholar
  30. Posch A, Sukkarieh S (2009) UAV based search for a radio tagged animal using particle filters. In: Australasian Conference on Robotics and Automation ACRA. Available from
  31. Potapov ER, Utekhina IG, McGrady MJ, Rimlinger D (2013) Usage of UAV for surveying Steller’s sea eagle nests. Raptors Conserv 27:253–260Google Scholar
  32. Rodríguez A, Negro JJ, Mulero M, Rodríguez C, Hernández-Pliego J, Bustamante J (2012) The eye in the sky: combined use of unmanned aerial systems and GPS data loggers for ecological research and conservation of small birds. PLoS One 7:e50336. Available from CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rümmler M-C, Mustafa O, Maercker J, Peter H-U, Esefeld J (2015) Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar Biol:1–6. Available from CrossRefGoogle Scholar
  34. Sardá-Palomera F, Bota G, Viñolo C, Pallarés O, Sazatornil V, Brotons L, Gomáriz S, Sardà F (2012) Fine-scale bird monitoring from light unmanned aircraft systems. Ibis 154:177–183. Available from CrossRefGoogle Scholar
  35. Sardà-Palomera F, Bota G, Padilla N, Brotons L, Sardà F (2017) Unmanned aircraft systems to unravel spatial and temporal factors affecting dynamics of colony formation and nesting success in birds. J Avian Biol 48:1273–1280CrossRefGoogle Scholar
  36. Sasse DB (2003) Job-related mortality of wildlife workers in the United States, 1937-2000. Wildl Soc Bull 31:1015–1020Google Scholar
  37. Shahbazi M, Théau J, Ménard P (2014) Recent applications of unmanned aerial imagery in natural resource management. GISci Remote Sens 51:339–365CrossRefGoogle Scholar
  38. Soriano P, Caballero F, Ollero A (2005) RF-based particle filter localization for wildlife tracking by using an UAV. In: 4th international symposium on RoboticsGoogle Scholar
  39. van Andel AC, Wich SA, Boesch C, Koh LP, Robbins MM, Kelly J, Kuehl HS (2015) Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle. Am J Primatol 77:1122–1134CrossRefPubMedGoogle Scholar
  40. van Blyenburgh P (2011) UAS: the global perspective 2011/2012. Blyenburgh & Co., ParisGoogle Scholar
  41. Vergouw B, Nagel H, Bondt G, Custers B (2016) Drone technology: types, payloads, applications, frequency spectrum issues and future developments. In: Custers B (ed) The future of drone use. T.M.C. Asser Press, pp 21–45. Available from Google Scholar
  42. Vermeulen C, Lejeune P, Lisein J, Sawadogo P, Bouché P (2013) Unmanned aerial survey of elephants. PLoS One 8.
  43. Weissensteiner MH, Poelstra JW, Wolf JBW (2015) Low-budget ready-to-fly unmanned aerial vehicles: an effective tool for evaluating the nesting status of canopy-breeding bird species. J Avian Biol 46:425–430. Available from CrossRefGoogle Scholar
  44. Wilson AM, Barr J, Zagorski M (2017) The feasibility of counting songbirds using unmanned aerial vehicles. Auk 134:350–362. Available from CrossRefGoogle Scholar
  45. Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13:693–712CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Evolutionary EcologyDoñana Biological Station (EBD-CSIC)SevilleSpain

Personalised recommendations