Advertisement

Vitamin D and the Central Nervous System: Development, Protection, and Disease

  • Samantha Roman
  • Ellen M. Mowry
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Vitamin D is a secosteroid that plays an important role in the central nervous system (CNS). Through binding to the vitamin D receptor (VDR), which is found throughout the CNS, 1,25-hydroxyvitamin D3 regulates gene transcription to exert neurotrophic and immunomodulatory effects. As a result of various downstream responses, vitamin D signaling provides neuroprotection, decreasing damage and accelerating recovery from a variety of CNS insults. As a result, a growing body of scientific literature addresses a possible relationship between this steroid, or lack thereof, and a variety of neurodegenerative diseases. In the first sections of this chapter, we will summarize the current understanding of the role vitamin D plays in CNS protection and development. In the latter section, we will examine existing evidence that vitamin D plays a role in neurodegenerative diseases, specifically evaluating if vitamin D availability may modify the risk, prognosis, and treatment outcomes for patients with Parkinson disease, Alzheimer disease, amyotrophic lateral sclerosis, and multiple sclerosis.

Keywords

Neurology Neurodevelopment Neurodegenerative disease Parkinson disease (PD) Alzheimer disease (AD) Amyotrophic lateral sclerosis (ALS) Multiple sclerosis (MS) 

Abbreviations

Amyloid-β

AD

Alzheimer disease

ALS

Amyotrophic lateral sclerosis

BBB

Blood-brain barrier

CDMS

Clinically definite multiple sclerosis

CIS

Clinically isolated syndrome

CNS

Central nervous system

DVD

Developmental vitamin D

MOG

Myelin oligodendrocyte glycoprotein

MS

Multiple sclerosis

NSC

Neural stem cell

PD

Parkinson disease

RRMS

Relapsing-remitting multiple sclerosis

SPMS

Secondary progressive multiple sclerosis

VDR

Vitamin D receptor

References

  1. 1.
    Carlberg C, Seuter S. A genomic perspective on vitamin D signaling. Anticancer Res. 2009;29(9):3485–93.PubMedGoogle Scholar
  2. 2.
    Eyles DW, Liu PY, Josh P, Cui X. Intracellular distribution of the vitamin D receptor in the brain: comparison with classic target tissues and redistribution with development. Neuroscience. 2014;268:1–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Gascon-Barre M, Huet P-M. Apparent [3H] 1, 25-dihydroxyvitamin D3 uptake by canine and rodent brain. Am J Physiol. 1983;244(3):E266–71.PubMedGoogle Scholar
  4. 4.
    Stumpf WE, Sar M, Clark SA, DeLuca HF. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215(4538):1403–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Stumpf WE, O’Brien LP. 1, 25 (OH) 2 vitamin D3 sites of action in the brain. Histochemistry. 1987;87(5):393–406.PubMedCrossRefGoogle Scholar
  6. 6.
    Prüfer K, Veenstra TD, Jirikowski GF, Kumar R. Distribution of 1, 25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J Chem Neuroanat. 1999;16(2):135–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat. 2005;29(1):21–30.CrossRefPubMedGoogle Scholar
  8. 8.
    El-Atifi M, Dreyfus M, Berger F, Wion D. Expression of CYP2R1 and VDR in human brain pericytes: the neurovascular vitamin D autocrine/paracrine model. Neuroreport. 2015;26(5):245–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Fu J, Xue R, Gu J, Xiao Y, Zhong H, Pan X, et al. Neuroprotective effect of calcitriol on ischemic/reperfusion injury through the NR3A/CREB pathways in the rat hippocampus. Mol Med Rep. 2013;8(6):1708–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Taniura H, Ito M, Sanada N, Kuramoto N, Ohno Y, Nakamichi N, et al. Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat cortical neurons. J Neurosci Res. 2006;83(7):1179–89.PubMedCrossRefGoogle Scholar
  11. 11.
    Kajta M, Makarewicz D, Ziemińska E, Jantas D, Domin H, Lasoń W, et al. Neuroprotection by co-treatment and post-treating with calcitriol following the ischemic and excitotoxic insult in vivo and in vitro. Neurochem Int. 2009;55(5):265–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Uberti F, Morsanuto V, Bardelli C, Molinari C. Protective effects of 1alpha,25-Dihydroxyvitamin D3 on cultured neural cells exposed to catalytic iron. Physiol Rep. 2016;4(11). pii: e12769.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Durk MR, Fan J, Sun H, Yang Y, Pang H, Pang KS, et al. Vitamin D receptor activation induces P-glycoprotein and increases brain efflux of quinidine:an Intracerebral microdialysis study in conscious rats. Pharm Res. 2015;32(3):1128–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Boontanrart M, Hall SD, Spanier JA, Hayes CE, Olson JK. Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J Neuroimmunol. 2016;292:126–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Dulla YAT, Kurauchi Y, Hisatsune A, Seki T, Shudo K, Katsuki H. Regulatory mechanisms of vitamin D3 on production of nitric oxide and pro-inflammatory cytokines in microglial BV-2 cells. Neurochem Res. 2016;41(11):2848–58.PubMedCrossRefGoogle Scholar
  16. 16.
    Streit WJ. Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res. 2004;77:1–8.  https://doi.org/10.1002/jnr.20093.CrossRefPubMedGoogle Scholar
  17. 17.
    Mann EH, Chambers ES, Chen Y-H, Richards DF, Hawrylowicz CM. 1α,25-dihydroxyvitamin D3 acts via transforming growth factor-β to up-regulate expression of immunosuppressive CD73 on human CD4+ Foxp3- T cells. Immunology. 2015;146(3):423–31.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Haas J, Schwarz A, Korporal-Kuhnke M, Faller S, Jarius S, Wildemann B. Hypovitaminosis D upscales B-cell immunoreactivity in multiple sclerosis. J Neuroimmunol. 2016;294:18–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Cui X, McGrath JJ, Burne THJ, Mackay-Sim A, Eyles DW. Maternal vitamin D depletion alters neurogenesis in the developing rat brain. Int J Dev Neurosci. 2007;25(4):227–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Anic GM, Thompson RC, Burton Nabors L, Olson JJ, Browning JE, Madden MH, et al. An exploratory analysis of common genetic variants in the vitamin D pathway including genome-wide associated variants in relation to glioma risk and outcome. Cancer Causes Control. 2012;23(9):1443–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Magnus T, Rao MS. Neural stem cells in inflammatory CNS diseases: mechanisms and therapy. J Cell Mol Med. 2005;9(2):303–19.PubMedCrossRefGoogle Scholar
  22. 22.
    Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang G-X. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol. 2015;98(2):240–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jang W, Park H-H, Lee K-Y, Lee YJ, Kim H-T, Koh S-H. 1,25-dyhydroxyvitamin D3 attenuates l-DOPA-induced neurotoxicity in neural stem cells. Mol Neurobiol. 2015;51(2):558–70.PubMedCrossRefGoogle Scholar
  24. 24.
    de la Fuente AG, Errea O, van Wijngaarden P, Gonzalez GA, Kerninon C, Jarjour AA, et al. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J Cell Biol. 2015;211(5):975–85.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Veenstra TD, Prufer K, Koenigsberger C, Brimijoin SW, Grande JP, Kumar R. 1,25-Dihydroxyvitamin D3 receptors in the central nervous system of the rat embryo. Brain Res. 1998;804(2):193–205.PubMedCrossRefGoogle Scholar
  26. 26.
    Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F. Vitamin D3 and brain development. Neuroscience. 2003;118(3):641–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D3. Rheum Dis Clin North Am. 2012;38(1):13–27.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chiang M, Natarajan R, Fan X. Vitamin D in schizophrenia: a clinical review. Evid Based Ment Health. 2016;19(1):6–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Feron F, Burne THJ, Brown J, Smith E, McGrath JJ, Mackay-Sim A, et al. Developmental vitamin D3 deficiency alters the adult rat brain. Brain Res Bull. 2005;65(2):141–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Almeras L, Eyles D, Benech P, Laffite D, Villard C, Patatian A, et al. Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics. 2007;7(5):769–80.PubMedCrossRefGoogle Scholar
  31. 31.
    O’Loan J, Eyles DW, Kesby J, Ko P, McGrath JJ, Burne THJ. Vitamin D deficiency during various stages of pregnancy in the rat; its impact on development and behaviour in adult offspring. Psychoneuroendocrinology. 2007;32(3):227–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res. 2015;286:192–200.PubMedCrossRefGoogle Scholar
  33. 33.
    Gale CR, Robinson SM, Harvey NC, Javaid MK, Jiang B, Martyn CN, et al. Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr. 2008;62(1):68–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Morales E, Guxens M, Llop S, Rodriguez-Bernal CL, Tardon A, Riano I, et al. Circulating 25-hydroxyvitamin D3 in pregnancy and infant neuropsychological development. Pediatrics. 2012;130(4):e913–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Tylavsky FA, Kocak M, Murphy LE, Graff JC, Palmer FB, Volgyi E, et al. Gestational vitamin 25(OH)D status as a risk factor for receptive language development: a 24-month, longitudinal, observational study. Nutrients. 2015;7(12):9918–30.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Whitehouse AJO, Holt BJ, Serralha M, Holt PG, Kusel MMH, Hart PH. Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics. 2012;129(3):485–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Keim SA, Bodnar LM, Klebanoff MA. Maternal and cord blood 25(OH)-vitamin D concentrations in relation to child development and behaviour. Paediatr Perinat Epidemiol. 2014;28(5):434–44.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gould JF, Anderson AJ, Yelland LN, Smithers LG, Skeaff CM, Zhou SJ, et al. Association of cord blood vitamin D with early childhood growth and neurodevelopment. J Paediatr Child Health. 2016;53(1):75–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Strom M, Halldorsson TI, Hansen S, Granstrom C, Maslova E, Petersen SB, et al. Vitamin D measured in maternal serum and offspring neurodevelopmental outcomes: a prospective study with long-term follow-up. Ann Nutr Metab. 2014;64(3–4):254–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Annweiler C, Annweiler T, Montero-Odasso M, Bartha R, Beauchet O. Vitamin D and brain volumetric changes: systematic review and meta-analysis. Maturitas. 2014;78(1):30–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Plozer E, Altbacker A, Darnai G, Perlaki G, Orsi G, Nagy SA, et al. Intracranial volume inversely correlates with serum 25(OH)D level in healthy young women. Nutr Neurosci. 2015;18(1):37–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Annweiler C, Bartha R, Goncalves S, Karras SN, Millet P, Feron F, et al. Vitamin D-related changes in intracranial volume in older adults: a quantitative neuroimaging study. Maturitas. 2015;80(3):312–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Keeney JTR, Förster S, Sultana R, Brewer LD, Latimer CS, Cai J, et al. Dietary vitamin D deficiency in rats from middle to old age leads to elevated tyrosine nitration and proteomics changes in levels of key proteins in brain: implications for low vitamin D-dependent age-related cognitive decline. Free Radic Biol Med. 2013;65:324–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Varzaneh FN, Sharifi F, Hossein-Nezhad A, Mirarefin M, Maghbooli Z, Ghaderpanahi M, et al. Association of vitamin D receptor with longevity and healthy aging. Acta Med Iran. 2013;51(4):236.Google Scholar
  45. 45.
    Jorde R, Mathiesen EB, Rogne S, Wilsgaard T, Kjærgaard M, Grimnes G, et al. Vitamin D and cognitive function: the Tromsø study. J Neurol Sci. 2015;355(1–2):155–61.PubMedCrossRefGoogle Scholar
  46. 46.
    Kuningas M, Mooijaart SP, Jolles J, Slagboom PE, Westendorp RGJ, van Heemst D. VDR gene variants associate with cognitive function and depressive symptoms in old age. Neurobiol Aging. 2009;30(3):466–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Beydoun MA, Ding EL, Beydoun HA, Tanaka T, Ferrucci L, Zonderman AB. Vitamin D receptor and megalin gene polymorphisms and their associations with longitudinal cognitive change in US adults. Am J Clin Nutr. 2012;95(1):163–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Llewellyn DJ. Vitamin D and risk of cognitive decline in elderly persons. Arch Intern Med. 2010;170(13):1135.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Slinin Y, Paudel ML, Taylor BC, Fink HA, Ishani A, Canales MT, et al. 25-Hydroxyvitamin D levels and cognitive performance and decline in elderly men. Neurology. 2010;74(1):33–41.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pettersen JA. Does high dose vitamin D supplementation enhance cognition?: a randomized trial in healthy adults. Exp Gerontol. 2017;90:90–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Cui X, Pelekanos M, Liu P-Y, Burne THJ, McGrath JJ, Eyles DW. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience. 2013;236:77–87.PubMedCrossRefGoogle Scholar
  52. 52.
    Evatt ML, DeLong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol. 2008;65(10):1348–52.  https://doi.org/10.1001/archneur.65.10.1348. [cited 2016 Dec 22].CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ding H, Dhima K, Lockhart KC, Locascio JJ, Hoesing AN, Duong K, et al. Unrecognized vitamin D3 deficiency is common in Parkinson disease Harvard Biomarker Study. Neurology. 2013;81(17):1531–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rimmelzwaan LM, van Schoor NM, Lips P, Berendse HW, Eekhoff EMW. Systematic review of the relationship between vitamin D and Parkinson’s disease. J Parkinsons Dis. 2016;6(1):29–37.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Saaksjarvi K, Heliovaara M. Serum vitamin D and the risk of Parkinson disease. Arch Neurol. 2010;67(7):808–11.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Shrestha S, Lutsey PL, Alonso A, Huang X, Mosley THJ, Chen H. Serum 25-hydroxyvitamin D concentrations in mid-adulthood and Parkinson’s disease risk. J Mov Disord Soc. 2016;31(7):972–8.CrossRefGoogle Scholar
  57. 57.
    Valdivielso JM, Fernandez E. Vitamin D receptor polymorphisms and diseases. Clin Chim Acta. 2006;371(1–2):1–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang Z-T, He Y-C, Ma X-J, Li D-Y, Lu G-C. Association between vitamin D receptor gene polymorphisms and susceptibility to Parkinson’s disease: a meta-analysis. Neurosci Lett. 2014;578:122–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Niu M-Y, Wang L, Xie A-M. ApaI, BsmI, FokI, and TaqI polymorphisms in the vitamin D receptor gene and Parkinson’s disease. Chin Med J (Engl). 2015;128(13):1809.CrossRefGoogle Scholar
  60. 60.
    Li C, Qi H, Wei S, Wang L, Fan X, Duan S, et al. Vitamin D receptor gene polymorphisms and the risk of Parkinson’s disease. Neurol Sci. 2015;36(2):247–55.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu Y, Zhang B. Serum 25-hydroxyvitamin D predicts severity in Parkinson’s disease patients. Neurol Sci. 2014;35(1):67–71.PubMedCrossRefGoogle Scholar
  62. 62.
    Chitsaz A, Maracy M, Basiri K, Izadi Boroujeni M, Tanhaei AP, Rahimi M, et al. 25-Hydroxyvitamin D and severity of Parkinson’s disease. Int J Endocrinol. 2013;2013:1–4.CrossRefGoogle Scholar
  63. 63.
    Gatto NM, Paul KC, Sinsheimer JS, Bronstein JM, Bordelon Y, Rausch R, et al. Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson’s disease. J Neurol Sci. 2016;370:100–6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Kawasaki K, Noya M, et al. 25-hydroxyvitamin D, vitamin D receptor gene polymorphisms, and severity of Parkinson’s disease. Mov Disord. 2012;27(2):264–71.PubMedCrossRefGoogle Scholar
  65. 65.
    Cass WA, Peters LE, Fletcher AM, Yurek DM. Calcitriol promotes augmented dopamine release in the lesioned striatum of 6-hydroxydopamine treated rats. Neurochem Res. 2014;39(8):1467–76.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Calvello R, Cianciulli A, Nicolardi G, De Nuccio F, Giannotti L, Salvatore R, et al. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, shifting M1 to M2 microglia responses. J Neuroimmune Pharmacol. 2016;12(2):327–39.  https://doi.org/10.1007/s11481-016-9720-7. [cited 2016 Dec 22].CrossRefPubMedGoogle Scholar
  67. 67.
    Ibi M, Sawada H, Nakanishi M, Kume T, Katsuki H, Kaneko S, et al. Protective effects of 1 alpha,25-(OH)(2)D(3) against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology. 2001;40(6):761–71.PubMedCrossRefGoogle Scholar
  68. 68.
    Xiong N, Xiong J, Jia M, Liu L, Zhang X, Chen Z, et al. The role of autophagy in Parkinson’s disease: rotenone-based modeling. Behav Brain Funct. 2013;9(1):13.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li H, Jang W, Kim HJ, Jo KD, Lee MK, Song SH, et al. Biochemical protective effect of 1,25-dihydroxyvitamin D3 through autophagy induction in the MPTP mouse model of Parkinson’s disease. Neuroreport. 2015;26(12):669–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Jang W, Kim HJ, Li H, Jo KD, Lee MK, Song SH, et al. 1,25-Dyhydroxyvitamin D3 attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem Biophys Res Commun. 2014;451(1):142–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Noya M, Takahashi D, et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr. 2013;97(5):1004–13.PubMedCrossRefGoogle Scholar
  72. 72.
    Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362(4):329–44.PubMedCrossRefGoogle Scholar
  73. 73.
    Raha S, Lee HJ, Yumnam S, Hong GE, Venkatarame Gowda Saralamma V, Ha YL, et al. Vitamin D2 suppresses amyloid-β 25–35 induced microglial activation in BV2 cells by blocking the NF-κB inflammatory signaling pathway. Life Sci. 2016;161:37–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Sato Y, Asoh T, Oizumi K. High prevalence of vitamin D deficiency and reduced bone mass in elderly women with Alzheimer’s disease. Bone. 1998;23(6):555–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PH, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 2014;83(10):920–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Afzal S, Bojesen SE, Nordestgaard BG. Reduced 25-hydroxyvitamin D and risk of Alzheimer’s disease and vascular dementia. Alzheimers Dement. 2014;10(3):296–302.PubMedCrossRefGoogle Scholar
  77. 77.
    Karakis I, Pase MP, Beiser A, Booth SL, Jacques PF, Rogers G, et al. Association of serum vitamin D with the risk of incident dementia and subclinical indices of brain aging: the Framingham Heart Study. Shea T, editor. J Alzheimers Dis. 2016;51(2):451–61.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dursun E, Gezen-Ak D, Yilmazer S. Beta amyloid suppresses the expression of the vitamin D receptor gene and induces the expression of the vitamin D catabolic enzyme gene in hippocampal neurons. Dement Geriatr Cogn Disord. 2013;36(1–2):76–86.PubMedCrossRefGoogle Scholar
  79. 79.
    Lehmann DJ, Refsum H, Warden DR, Medway C, Wilcock GK, Smith AD. The vitamin D receptor gene is associated with Alzheimer’s disease. Neurosci Lett. 2011;504(2):79–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Gezen-Ak D, Dursun E, Ertan T, Hanagasi H, Gurvit H, Emre M, et al. Association between vitamin D receptor gene polymorphism and Alzheimer’s disease. Tohoku J Exp Med. 2007;212(3):275–82.PubMedCrossRefGoogle Scholar
  81. 81.
    Luedecking-Zimmer E, DeKosky ST, Nebes R, Kamboh MI. Association of the 3’ UTR transcription factor LBP-1c/CP2/LSF polymorphism with late-onset Alzheimer’s disease. Am J Med Genet. 2003;117B(1):114–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Laczmanski L, Jakubik M, Bednarek-Tupikowska G, Rymaszewska J, Sloka N, Lwow F. Vitamin D receptor gene polymorphisms in Alzheimer’s disease patients. Exp Gerontol. 2015;69:142–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Huebbe P, Nebel A, Siegert S, Moehring J, Boesch-Saadatmandi C, Most E, et al. APOE 4 is associated with higher vitamin D levels in targeted replacement mice and humans. FASEB J. 2011;25(9):3262–70.PubMedCrossRefGoogle Scholar
  84. 84.
    Dursun E, Alaylıoğlu M, Bilgiç B, Hanağası H, Lohmann E, Atasoy IL, et al. Vitamin D deficiency might pose a greater risk for ApoEɛ4 non-carrier Alzheimer’s disease patients. Neurol Sci. 2016;37(10):1633–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Miller JW, Harvey DJ, Beckett LA, Green R, Farias ST, Reed BR, et al. Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurol. 2015;72(11):1295.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Yu J, Gattoni-Celli M, Zhu H, Bhat NR, Sambamurti K, Gattoni-Celli S, et al. Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AβPP transgenic mice. J Alzheimers Dis. 2011;25(2):295–307.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, et al. beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem. 2001;76(4):1121–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Durk MR, Han K, Chow ECY, Ahrens R, Henderson JT, Fraser PE, et al. 1,25-Dihydroxyvitamin D3 reduces cerebral amyloid-accumulation and improves cognition in mouse models of Alzheimer’s disease. J Neurosci. 2014;34(21):7091–101.PubMedCrossRefGoogle Scholar
  89. 89.
    Stein MS, Scherer SC, Ladd KS, Harrison LC. A randomized controlled trial of high-dose vitamin D2 followed by intranasal insulin in Alzheimer’s disease. J Alzheimers Dis. 2011;26(3):477–84.PubMedCrossRefGoogle Scholar
  90. 90.
    Gordon PH. Amyotrophic lateral sclerosis. CNS Drugs. 2011;25(1):1–15.PubMedCrossRefGoogle Scholar
  91. 91.
    Torok N, Torok R, Klivenyi P, Engelhardt J, Vecsei L. Investigation of vitamin D receptor polymorphisms in amyotrophic lateral sclerosis. Acta Neurol Scand. 2016;133(4):302–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Wang M-D, Little J, Gomes J, Cashman NR, Krewski D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology. 2017;61:101–30. http://www.sciencedirect.com/science/article/pii/S0161813X16301164.PubMedCrossRefGoogle Scholar
  93. 93.
    Kamel F, Umbach DM, Lehman TA, Park LP, Munsat TL, Shefner JM, et al. Amyotrophic lateral sclerosis, lead, and genetic susceptibility: polymorphisms in the δ-aminolevulinic acid dehydratase and vitamin D receptor genes. Environ Health Perspect. 2003;111(10):1335–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Camu W, Tremblier B, Plassot C, Alphandery S, Salsac C, Pageot N, et al. Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol Aging. 2014;35(5):1198–205.PubMedCrossRefGoogle Scholar
  95. 95.
    Solomon JA, Gianforcaro A, Hamadeh MJ. Vitamin D3 deficiency differentially affects functional and disease outcomes in the G93A mouse model of amyotrophic lateral sclerosis. Klein R, editor. PLoS One. 2011;6(12):e29354.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Moghimi E, Solomon JA, Gianforcaro A, Hamadeh MJ. Dietary vitamin D3 restriction exacerbates disease pathophysiology in the spinal cord of the G93A mouse model of amyotrophic lateral sclerosis. Sensi SL, editor. PLoS One. 2015;10(5):e0126355.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Blasco H, Madji Hounoum B, Dufour-Rainfray D, Patin F, Maillot F, Beltran S, et al. Vitamin D is not a protective factor in ALS. CNS Neurosci Ther. 2015;21(8):651–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Yang J, Park J-S, Oh K-W, Oh S, Park H-M, Kim SH. Vitamin D levels are not predictors of survival in a clinic population of patients with ALS. J Neurol Sci. 2016;367:83–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Gianforcaro A, Hamadeh MJ. Dietary vitamin D3 supplementation at 10× the adequate intake improves functional capacity in the G93A transgenic mouse model of ALS, a pilot study: dietary vitamin D3 supplementation in transgenic mouse model of ALS. CNS Neurosci Ther. 2012;18(7):547–57.PubMedCrossRefGoogle Scholar
  100. 100.
    Gianforcaro A, Solomon JA, Hamadeh MJ. Vitamin D3 at 50x AI attenuates the decline in paw grip endurance, but not disease outcomes, in the G93A mouse model of ALS, and is toxic in females. Borchelt DR, editor. PLoS One. 2013;8(2):e30243.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Karam C, Barrett MJ, Imperato T, MacGowan DJL, Scelsa S. Vitamin D deficiency and its supplementation in patients with amyotrophic lateral sclerosis. J Clin Neurosci. 2013;20(11):1550–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Gianforcaro A, Hamadeh MJ. Vitamin D as a potential therapy in amyotrophic lateral sclerosis. CNS Neurosci Ther. 2014;20(2):101–11.PubMedCrossRefGoogle Scholar
  103. 103.
    Simpson S, Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(10):1132–41.PubMedCrossRefGoogle Scholar
  104. 104.
    Tao C, Simpson S, van der Mei I, Blizzard L, Havrdova E, Horakova D, et al. Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(12):1343–9.  https://doi.org/10.1136/jnnp-2016-314013.CrossRefPubMedGoogle Scholar
  105. 105.
    Gale CR, Martyn CN. Migrant studies in multiple sclerosis. Prog Neurobiol. 1995;47(4–5):425–48.PubMedCrossRefGoogle Scholar
  106. 106.
    Ebers GC, Bulman DE, Sadovnick AD, Paty DW, Warren S, Hader W, et al. A population-based study of multiple sclerosis in twins. N Engl J Med. 1986;315(26):1638–42.PubMedCrossRefGoogle Scholar
  107. 107.
    Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Nielsen NM, Munger KL, Koch-Henriksen N, Hougaard DM, Magyari M, Jørgensen KT, et al. Neonatal vitamin D status and risk of multiple sclerosis: a population-based case-control study. Neurology. 2016;88(1):44–51.  https://doi.org/10.1212/WNL.0000000000003454.CrossRefPubMedGoogle Scholar
  109. 109.
    Munger KL, Aivo J, Hongell K, Soilu-Hanninen M, Surcel H-M, Ascherio A. Vitamin D status during pregnancy and risk of multiple sclerosis in offspring of women in the Finnish Maternity Cohort. JAMA Neurol. 2016;73(5):515–9.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Laursen JH, Søndergaard HB, Sørensen PS, Sellebjerg F, Oturai AB. Association between age at onset of multiple sclerosis and vitamin D level–related factors. Neurology. 2016;86(1):88–93.PubMedCrossRefGoogle Scholar
  111. 111.
    Lucas RM, Ponsonby A-L, Dear K, Valery PC, Pender MP, Taylor BV, et al. Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology. 2011;76(6):540–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Hart PH, Gorman S, Finlay-Jones JJ. Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat Rev Immunol. 2011;11(9):584–96.PubMedCrossRefGoogle Scholar
  113. 113.
    Tizaoui K, Kaabachi W, Hamzaoui A, Hamzaoui K. Association between vitamin D receptor polymorphisms and multiple sclerosis: systematic review and meta-analysis of case–control studies. Cell Mol Immunol. 2015;12(2):243–52.PubMedCrossRefGoogle Scholar
  114. 114.
    Simon KC, Munger KL, Yang X, Ascherio A. Polymorphisms in vitamin D metabolism related genes and risk of multiple sclerosis. Mult Scler. 2010;16(2):133–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Ascherio A, Munger KL, White R, Köchert K, Simon KC, Polman CH, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014;71(3):306.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mowry EM, Pelletier D, Gao Z, Howell MD, Zamvil SS, Waubant E. Vitamin D in clinically isolated syndrome: evidence for possible neuroprotection. Eur J Neurol. 2016;23(2):327–32.PubMedCrossRefGoogle Scholar
  117. 117.
    Mowry EM, Krupp LB, Milazzo M, Chabas D, Strober JB, Belman AL, et al. Vitamin D status is associated with relapse rate in pediatric-onset MS. Ann Neurol. 2010;67(5):618–24.PubMedGoogle Scholar
  118. 118.
    Brola W, Sobolewski P, Szczuchniak W, Góral A, Fudala M, Przybylski W, et al. Association of seasonal serum 25-hydroxyvitamin D levels with disability and relapses in relapsing-remitting multiple sclerosis. Eur J Clin Nutr. 2016;70(9):995–9. http://www.nature.com/ejcn/journal/vaop/ncurrent/full/ejcn201651a.html. [cited 2016 Dec 22].PubMedCrossRefGoogle Scholar
  119. 119.
    Runia TF, Hop WC, de Rijke YB, Buljevac D, Hintzen RQ. Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis. Neurology. 2012;79(3):261–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Simpson SJ, Taylor B, Blizzard L, Ponsonby A-L, Pittas F, Tremlett H, et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol. 2010;68(2):193–203.PubMedGoogle Scholar
  121. 121.
    Muris A-H, Smolders J, Rolf L, Klinkenberg LJJ, van der Linden N, Meex S, et al. Vitamin D status does not affect disability progression of patients with multiple sclerosis over three year follow-up. Ramagopalan SV, editor. PLoS One. 2016;11(6):e0156122.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Muris A-H, Rolf L, Broen K, Hupperts R, Damoiseaux J, Smolders J. A low vitamin D status at diagnosis is associated with an early conversion to secondary progressive multiple sclerosis. J Steroid Biochem Mol Biol. 2016;164:254–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Nashold FE, Miller DJ, Hayes CE. 1,25-dihydroxyvitamin D3 treatment decreases macrophage accumulation in the CNS of mice with experimental autoimmune encephalomyelitis. J Neuroimmunol. 2000;103(2):171–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Sloka S, Zhornitsky S, Silva C, Metz LM, Yong VW. 1,25-Dihydroxyvitamin D3 protects against immune-mediated killing of neurons in culture and in experimental autoimmune encephalomyelitis. Nataf S, editor. PLoS One. 2015;10(12):e0144084.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Nystad AE, Wergeland S, Aksnes L, Myhr K-M, Bø L, Torkildsen Ø. Effect of high-dose 1.25 dihydroxyvitamin D3 on remyelination in the cuprizone model. APMIS. 2014;122(12):1178–86.PubMedCrossRefGoogle Scholar
  126. 126.
    Mimura LAN, Chiuso-Minicucci F, Fraga-Silva TFC, Zorzella-Pezavento SFG, Franca TGD, Ishikawa LLW, et al. Association of myelin peptide with vitamin D prevents autoimmune encephalomyelitis development. Neuroscience. 2016;317:130–40.PubMedCrossRefGoogle Scholar
  127. 127.
    Sotirchos ES, Bhargava P, Eckstein C, Van Haren K, Baynes M, Ntranos A, et al. Safety and immunologic effects of high-vs low-dose cholecalciferol in multiple sclerosis. Neurology. 2016;86(4):382–90.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Bhargava P, Steele SU, Waubant E, Revirajan NR, Marcus J, Dembele M, et al. Multiple sclerosis patients have a diminished serologic response to vitamin D supplementation compared to healthy controls. Mult Scler J. 2016;22(6):753–60.CrossRefGoogle Scholar
  129. 129.
    Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain. 2009;132(5):1146–60.PubMedCrossRefGoogle Scholar
  130. 130.
    Smolders J, Hupperts R, Vieth R, Holmøy T, Marhardt K, Schluep M, et al. High dose cholecalciferol (vitamin D3) oil as add-on therapy in subjects with relapsing-remitting multiple sclerosis receiving subcutaneous interferon β-1a. London: ECTRIMS Online Library; 2016.Google Scholar
  131. 131.
    Ashtari F, Toghianifar N, Zarkesh-Esfahani SH, Mansourian M. High dose vitamin D intake and quality of life in relapsing-remitting multiple sclerosis: a randomized, double-blind, placebo-controlled clinical trial. Neurol Res. 2016;38(10):888–92.PubMedCrossRefGoogle Scholar
  132. 132.
    Bhargava P, Cassard S, Steele SU, Azevedo C, Pelletier D, Sugar EA, et al. The vitamin D to ameliorate multiple sclerosis (VIDAMS) trial: study design for a multicenter, randomized, double-blind controlled trial of vitamin D in multiple sclerosis. Contemp Clin Trials. 2014;39(2):288–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Johns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations