Advertisement

Muscle Weakness and Falls

  • Giovanni Iolascon
  • Antimo Moretti
  • Letizia Stefano
  • Francesca Gimigliano
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Even if the muscle impairment secondary to hypovitaminosis D has been known since the seventeenth century in children affected by rickets, we had to wait for the discovery of the presence of the vitamin D receptor (VDR) in the human skeletal muscle cells to witness a remarkable growth of knowledge concerning the action of vitamin D on muscle. The effects of the binding of vitamin D to its receptor are (1) the stimulation of skeletal muscle growth and differentiation via gene transcription (long-term mechanism), (2) the activation of second messenger calcium-mediated system that regulates intracellular calcium levels and modulates muscle contraction (short-term mechanism), and (3) the inhibition of fat infiltration in skeletal muscle, thus improving physical performance.

The prevalence of vitamin D deficiency increases with age contributing to muscle wasting and skeletal fragility.

Therefore, along with the bone evaluation, a comprehensive assessment of skeletal muscle mass and functioning, including the measurement of appendicular lean mass (ALM) by dual-energy X-ray absorptiometry (DXA), muscle weakness by handgrip strength and knee extension strength, and physical performance through validated outcome measures, should be performed.

Data about the efficacy of vitamin D or its derivatives in the improvement of skeletal muscle health are conflicting. The most relevant evidences regard the beneficial effects on muscle function and fall risk prevention. It has been demonstrated that vitamin D enhances the effectiveness of therapeutic interventions, such as exercise and dietary supplements, in terms of muscle strength and physical performance. Serum 25(OH)D levels should be higher than 30 ng/mL or higher than 40 ng/mL if we wish to improve muscle function. Therefore a supplementation of at least 2000 IU/day of vitamin D should be prescribed.

Keywords

Vitamin D Vitamin D deficiency Muscle weakness Falls Sarcopenia 

References

  1. 1.
    Glisson F. Dc Rachitide. London: Sadler; 1660.Google Scholar
  2. 2.
    Hagenbach-Burckhardt F. Klinische Beobachtungen uber die Muskulatur der Rachitischen. J Kinderheilk. 1904;60:471.Google Scholar
  3. 3.
    Bing R. Myopathia rachitica. J Kinderheilk. 1908;68:64.Google Scholar
  4. 4.
    Peitsara H. Tierexperimentelle Rachitisuntersuchungen mit besonderer Berticksichtigung der Muskeltatigkeit. Acta Paediatr. 1944;31(Suppl III):1.Google Scholar
  5. 5.
    Patten BM, Bilezikian JP, Mallettfe LE, Prince A, Engel WK, Aurbach GD. Neuromuscular disease in primary hyperparathyroidism. Ann Intern Med. 1974;80:182.PubMedCrossRefGoogle Scholar
  6. 6.
    Haussler MR, Norman AW. Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci U S A. 1969;62(1):155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Simpson R, Thomas G, Arnold A. Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem. 1985;260:8882–91.PubMedGoogle Scholar
  8. 8.
    Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010;20(2):182–90.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Costa EM, Blau HM, Feldman D. 1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology. 1986;119(5):2214–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Pojednic R, Ceglia L, Olsson K, Gustafsson T, Lichtenstein A, Dawson-Hughes B, et al. Effects of 1,25-dihydroxyvitamin D and vitamin D on the expression of the vitamin D receptor in human skeletal muscle cells. Calcif Tissue Int. 2015;96:256–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Christakos S, Hewison M, Gardner DG, Wagner CL, Sergeev IN, Rutten E, Pittas AG, Boland R, Ferrucci L, Bikle DD. Vitamin D: beyond bone. Ann N Y Acad Sci. 2013;1287:45–58.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    McCary LC, Staun M, DeLuca HF. A characterization of vitamin D-independent intestinal calcium absorption in the osteopetrotic (op/op) mouse. Arch Biochem Biophys. 1999;368(2):249–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Mazzaferro S, Pasquali M. Vitamin D: a dynamic molecule. How relevant might the dynamism for a vitamin be? Nephrol Dial Transplant. 2016;31(1):23–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Molnár F, Peräkylä M, Carlberg C. Vitamin D receptor agonists specifically modulate the volume of the ligand-binding pocket. J Biol Chem. 2006;281:10516–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Zanello SB, Boland RL, Norman AW. cDNA sequence identity of a vitamin D-dependent calcium-binding protein in the chick to calbindin D-9K. Endocrinology. 1995;136(6):2784–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Brunner A, de Boland AR. 1,25-Dihydroxyvitamin D3 affects the synthesis, phosphorylation and in vitro calmodulin binding of myoblast cytoskeletal proteins. Z Naturforsch [C]. 1990;45(11–12):1156–60.CrossRefGoogle Scholar
  17. 17.
    Boland R, de Boland AR, Marinissen MJ, Santillan G, Vazquez G, Zanello S. Avian muscle cells as targets for the secosteroid hormone 1,25- dihydroxy-vitamin D3. Mol Cell Endocrinol. 1995;114(1–2):1–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Song Y, Kato S, Fleet JC. Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA. J Nutr. 2003;133(2):374–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, Kato S, Matsumoto T. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology. 2003;144(12):5138–44. Epub 2003 Aug 13.PubMedCrossRefGoogle Scholar
  20. 20.
    Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Asp Med. 2008;29(6):407–14.CrossRefGoogle Scholar
  21. 21.
    Geusens P, Vandevyver C, Vanhoof J, Cassiman JJ, Boonen S, Raus J. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Miner Res. 1997;12:2082–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang Y, DeLuca HF. Is the vitamin D receptor found in muscle? Endocrinology. 2011;152:354–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen S, Law CS, Grigsby CL, Olsen K, Hong TT, Zhang Y, Yeghiazarians Y, Gardner DG. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation. 2011;124:1838–47.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation and myotube size in C2C12 skeletal muscle cells. Endocrinology. 2014;155:347–57.PubMedCrossRefGoogle Scholar
  25. 25.
    Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, Mason RS, Clifton-Bligh RJ, Gunton JE. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology. 2014;155:3227–37.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Molnár F. Structural considerations of vitamin D signaling. Front Physiol. 2014;5:191.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hii CS, Ferrante A. The non-genomic actions of vitamin D. Forum Nutr. 2016;8(3):135.Google Scholar
  28. 28.
    Boland R. Role of vitamin D in skeletal muscle function. Endocr Rev. 1986;7:434–48.PubMedCrossRefGoogle Scholar
  29. 29.
    Boland R. VDR activation of intracellular signaling pathways in skeletal muscle. Mol Cell Endocrinol. 2011;34:11–6.CrossRefGoogle Scholar
  30. 30.
    Dirks-Naylor AJ, Lennon-Edwards S. The effects of vitamin D on skeletal muscle function and cellular signaling. J Steroid Biochem Mol Biol. 2011;125(3):159–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Sanders KM, Scott D, Ebeling PR. Vitamin D deficiency and its role in muscle-bone interactions in the elderly. Curr Osteoporos Rep. 2014;12(1):74–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Ryan KJ, Daniel ZC, Craggs LJ, Parr T, Brameld JM. Dose dependent effects of vitamin D on transdifferentiation of skeletal muscle cells to adipose cells. J Endocrinol. 2013;217(1):45–58.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Scott D, Sanders KM, Ebeling PR. Vitamin D, muscle function, and falls in older adults: does reduced deposition of intramuscular adipose tissue influence the relationship? J Clin Endocrinol Metabol. 2013;98(10):3968–70.CrossRefGoogle Scholar
  34. 34.
    Marcus RL, Addison O, Dibble LE, Foreman KB, Morrell G, LaStayo P. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res. 2012;2012:629637.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Peake J, Della Gatta P, Cameron-Smith D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise induced muscle injury. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):14.CrossRefGoogle Scholar
  36. 36.
    Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J. 2005;19(6):668–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo controlled trial. Am J Clin Nutr. 2006;83(4):754–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Morley JE. Vitamin D redux. J Am Med Dir Assoc. 2009;10:591–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V. Muscle and bone, two interconnected tissues. Ageing Res Rev. 2015;21:55–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Morley JE. Frailty and sarcopenia: the new geriatric giants. Rev Inves Clin. 2016;68:59–67.Google Scholar
  41. 41.
    Tanaka K-i, Kanazawa I, Yamaguchi T, Yano S, Kaji H, Sugimoto T. Active vitamin D possesses beneficial effects on the interaction between muscle and bone. Biochem Biophys Res Commun. 2014;450:482–7.PubMedCrossRefGoogle Scholar
  42. 42.
    White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges—a mini-review. Gerontology. 2014;60:289–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and skeletal form. J Musculoskelet Neuronal Interact. 2010;10:56.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kellum E, Starr H, Arounleut P, Immel D, Fulzele S, Wenger K, Hamrick MW. Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone. 2009;44:17–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of pro myogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011;152:2976–86.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gunton JE, Girgis CM, Baldock PA, Lips P. Bone muscle interactions and vitamin D. Bone. 2015;80:89–94.PubMedCrossRefGoogle Scholar
  47. 47.
    Gannage-Yared MH, Azoury M, Mansour I, Baddoura R, Halaby G, Naaman R. Effects of a short-term calcium and vitamin D treatment on serum cytokines, bone markers, insulin and lipid concentrations in healthy post-menopausal women. J Endocrinol Investig. 2003;26:748–53.CrossRefGoogle Scholar
  48. 48.
    Lalwani A, Stokes RA, Lau SM, Gunton JE. Deletion of ARNT (aryl hydrocarbon receptor nuclear translocator) in β-cells causes islet transplant failure with impaired β- cell function. PLoS One. 2014;9:e98435.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    van Lierop A, Hamdy N, van Bezooijen R, Löwik C, Papapoulos S. The role of sclerostin in the pathophysiology of sclerosing bone dysplasias. Clin Rev Bone Miner Metab. 2012;10:108–16.CrossRefGoogle Scholar
  50. 50.
    Spatz J, Fields E, Yu E, Pajevic PD, Bouxsein M, Sibonga J, Zwart SR, Smith SM. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab. 2012;97:E1736–40.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dawson-Hughes B, Harris SS, Ceglia L, Palermo NJ. Effect of supplemental vitamin D and calcium on serum sclerostin levels. Eur J Endocrinol. 2014;170:645–50.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bischoff-Ferrari HA, Borchers M, Gudat F, Dürmüller U, Stähelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19:265–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Visser M, Deeg DJ, Puts MT, Seidell JC, Lips P. Low serum concentrations of 25-hydroxyvitamin D in older persons and the risk of nursing home admission. Am J Clin Nutr. 2006;84:616–22, quiz 671–2.PubMedCrossRefGoogle Scholar
  54. 54.
    Janssen HC, Emmelot-Vonk MH, Verhaar HJ, van der Schouw YT. Vitamin D and muscle function: is there a threshold in the relation? J Am Med Dir Assoc. 2013;14:627.e13–8.CrossRefGoogle Scholar
  55. 55.
    Anagnostis P, Dimopoulou C, Karras S, Lambrinoudaki I, Goulis DG. Sarcopenia in post-menopausal women: is there any role for vitamin D? Maturitas. 2015;82(1):56–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Puts MT, Visser M, Twisk JW, Deeg DJ, Lips P. Endocrine and inflammatory markers as predictors of frailty. ClinEndocrinol (Oxf). 2005;63:403–11.CrossRefGoogle Scholar
  57. 57.
    Artaza-Artabe I, Sáez-López P, Sánchez-Hernández N, Fernández-Gutierrez N, Malafarina V. The relationship between nutrition and frailty: effects of protein intake, nutritional supplementation, vitamin D and exercise on muscle metabolism in the elderly. A systematic review. Maturitas. 2016;93:89–99.PubMedCrossRefGoogle Scholar
  58. 58.
    Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, Cesari M, Chumlea WC, Doehner W, Evans J, Fried LP, Guralnik JM, Katz PR, Malmstrom TK, McCarter RJ, Gutierrez Robledo LM, Rockwood K, von Haehling S, Vandewoude MF, Walston J. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14:392–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Finbarr C, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M. Sarcopenia: European consensus on definition and diagnosis report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39:412–23.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Morley JE. Sarcopenia in the elderly. Fam Pract. 2012;29(Suppl 1):i44–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Morley JE. Sarcopenia: diagnosis and treatment. J Nutr Health Aging. 2008;12:452–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Hepple RT. Sarcopenia: a critical perspective. Sci Aging Knowl Environ. 2003;45:31.Google Scholar
  63. 63.
    Drey M, Grösch C, Neuwirth C, Bauer JM, Sieber CC. The motor unit number index (MUNIX) in sarcopenic patients. Exp Gerontol. 2013;48:381–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Correa-de-Araujo R, Hadley E. Skeletal muscle function deficit: a new terminology to embrace the evolving concepts of sarcopenia and age-related muscle dysfunction. J Gerontol A Biol Sci Med Sci. 2014;69(5):591–4.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhang P, Peterson M, Su GL, Wang SC, et al. Visceral adiposity is negatively associated with bone density and muscle attenuation. Am J Clin Nutr. 2015;101(2):337–43.PubMedCrossRefGoogle Scholar
  66. 66.
    Malkov S, Cawthon PM, Peters KW, Cauley JA, Murphy RA, Visser M, Wilson JP, Harris T, Satterfield S, Cummings S, Shepherd JA, Health ABC Study. Hip fractures risk in older men and women associated with DXA-derived measures of thigh subcutaneous fat thickness, cross-sectional muscle area, and muscle density. J Bone Miner Res. 2015;30(8):1414–21.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wannamethee SG, Atkins JL. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc. 2015;27:1–8.Google Scholar
  68. 68.
    Binkley N, Krueger D, Buehring B. What’s in a name revisited: should osteoporosis and sarcopenia be considered components of “dysmobility syndrome?”. Osteoporos Int. 2013;24(12):2955–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Ensrud KE, Ewing SK, Fredman L, Hochberg MC, Cauley JA, Hillier TA, Cummings SR, Yaffe K, Cawthon PM, Study of Osteoporotic Fractures Research Group. Circulating 25-hydroxyvitamin D levels and frailty status in older women. J Clin Endocrinol Metab. 2010;95(12):5266–73.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tajar A, Lee DM, Pye SR, O’Connell MD, Ravindrarajah R, Gielen E, Boonen S, Vanderschueren D, Pendleton N, Finn JD, Bartfai G, Casanueva FF, Forti G, Giwercman A, Han TS, Huhtaniemi IT, Kula K, Lean ME, Punab M, Wu FC, O’Neill TW. The association of frailty with serum 25-hydroxyvitamin D and parathyroid hormone levels in older European men. Age Ageing. 2013;42:352–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Morley JE, Argiles JM, Evans WJ, Bhasin S, Cella D, Deutz NEP, Doehner W, Fearon KCH, Ferrucci L, Hellerstein MK, Kalantar-Zadeh K, Lochs H, MacDonald N, Mulligan K, Muscaritoti M, Ponikowski P, Posthauer ME, Fanelli FR, Schambelan M, Schols AMWJ, Schuster MW, Anker SD. Nutritional recommendations for the management of sarcopenia. JAm Med Dir Assoc. 2010;11:391–6.CrossRefGoogle Scholar
  72. 72.
    Park S, Ham JO, Lee BK. A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr. 2014;33:900–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim MK, Baek KH, Song KH, Il Kang M, Park CY, Lee WY, et al. Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: the Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. J Clin Endocrinol Metab. 2011;96:3250–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr. 2011;52:71–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Sjöblom S, Suuronen J, Rikkonen T, Honkanen R, Kröger H, Sirola J. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas. 2013;75:175–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Hida T, Shimokata H, Sakai Y, Ito S, Matsui Y, Takemura M, Kasai T, Ishiguro N, Harada A. Sarcopenia and sarcopenic leg as potential risk factors for acute osteoporotic vertebral fracture among older women. Eur Spine J. 2016;25(11):3424–31.PubMedCrossRefGoogle Scholar
  77. 77.
    Hida T, Ishiguro N, Shimokata H, Sakai Y, Matsui Y, Takemura M, Terabe Y, Harada A. High prevalence of sarcopenia and reduced leg muscle mass in Japanese patients immediately after a hip fracture. Geriatr Gerontol Int. 2013;13:413–20.PubMedCrossRefGoogle Scholar
  78. 78.
    Di Monaco M, Castiglioni C, Vallero F, Di Monaco R, Tappero R. Appendicular lean mass does not mediate the significant association between vitamin D status and functional outcome in hip-fracture women. Arch Phys Med Rehabil. 2011;92:271–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Visser M, Deeg DJ, Lips P, Longitudinal Aging Study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab. 2003;88(12):5766–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged ≥60 y. Am J Clin Nutr. 2004;80:752–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, Wallace RB. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55(4):M221–3.PubMedCrossRefGoogle Scholar
  82. 82.
    Mastaglia SR, Seijo M, Muzio D, Somoza J, Nuñez M, Oliveri B. Effect of vitamin D nutritional status on muscle function and strength in healthy women aged over sixty-five years. J Nutr Health Aging. 2011;15(5):349–54.PubMedCrossRefGoogle Scholar
  83. 83.
    Gerdhem P, Ringsberg KA, Obrant KJ, Akesson K. Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA study of elderly women. Osteoporos Int. 2005;16:1425–31.PubMedCrossRefGoogle Scholar
  84. 84.
    Houston DK, Cesari M, Ferrucci L, Cherubini A, Maggio D, Bartali B, Johnson MA, Schwartz GG, Kritchevsky SB. Association between vitamin D status and physical performance: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2007;62:440–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Toffanello ED, Perissinotto E, Sergi G, Zambon S, Musacchio E, Maggi S, Coin A, Sartori L, Corti MC, Baggio G, Crepaldi G, Manzato E. Vitamin D and physical performance in elderly subjects: the Pro.V.A study. PLoS One. 2012;7(4):e34950.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Boyé ND, Oudshoorn C, van der Velde N, van Lieshout EM, de Vries OJ, Lips P, van Beeck EF, Patka P, van der Cammen TJ. Vitamin D and physical performance in older men and women visiting the emergency department because of a fall: data from the improving medication prescribing to reduce risk of FALLs (IMPROveFALL) study. J Am Geriatr Soc. 2013;61(11):1948–52.PubMedCrossRefGoogle Scholar
  87. 87.
    Wicherts IS, van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J, Knol DL, Lips P. Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab. 2007;92(6):2058–65. Epub 2007 Mar 6.PubMedCrossRefGoogle Scholar
  88. 88.
    Matheï C, van Pottelbergh G, Vaes B, Adriaensen W, Gruson D, Degryse J-M. No relation between vitamin D status and physical performance in the oldest old: results from the belfrail study. Age Ageing. 2013;42(2):186–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Pramyothin P, Techasurungkul S, Lin J, Wang H, Shah A, Ross PD, Puapong R, Wasnich RD. Vitamin D status and falls, frailty, and fractures among postmenopausal Japanese women living in Hawaii. Osteoporos Int. 2009;20(11):1955–62.PubMedCrossRefGoogle Scholar
  90. 90.
    Ceglia L, Chiu GR, Harris SS, Araujo AB. Serum 25- hydroxyvitamin D concentration and physical function in adult men. Clin Endocrinol. 2011;74(3):370–6.CrossRefGoogle Scholar
  91. 91.
    Houston DK, Tooze JA, Neiberg RH, Hausman DB, Johnson MA, Cauley JA, Bauer DC, Cawthon PM, Shea MK, Schwartz GG, Williamson JD, Tylavsky FA, Visser M, Simonsick EM, Harris TB, Kritchevsky SB, Health ABC Study. 25-hydroxyvitamin D status and change in physical performance and strength in older adults: the health, aging, and body composition study. Am J Epidemiol. 2012;176(11):1025–34.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Iolascon G, de Sire A, Calafiore D, Moretti A, Gimigliano R, Gimigliano F. Hypovitaminosis D is associated with a reduction in upper and lower limb muscle strength and physical performance in post-menopausal women: a retrospective study. Aging Clin Exp Res. 2015;27:23.  https://doi.org/10.1007/s40520-015-0405-5.CrossRefGoogle Scholar
  93. 93.
    Zhou C, Assem M, Tay JC, Watkins PB, Blumberg B, Schuetz EG, Thummel KE. Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest. 2006;116:1703–12.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547–58.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Al Snih S, Markides K, Ottenbacher K, et al. Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period. Aging Clin Exp Res. 2004;16:481–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Andrews AW, Thomas MW, Bohannon RW. Normative values for isometric muscle force measurements obtained with hand-held dynamometers. Phys Ther. 1996;76(3):248–59.PubMedCrossRefGoogle Scholar
  97. 97.
    Bassey EJ, Short AH. A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol Occup Physiol. 1990;60:385–90.PubMedCrossRefGoogle Scholar
  98. 98.
    Feiring DC, Ellenbecker TS, Derscheid GL. Test–retest reliability of the biodex isokinetic dynamometer. J Orthop Sports Phys Ther. 1990;11:298–300.PubMedCrossRefGoogle Scholar
  99. 99.
    Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94.PubMedCrossRefGoogle Scholar
  100. 100.
    Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the “get-up and go” test. Arch Phys Med Rehabil. 1986;67:387–9.PubMedGoogle Scholar
  101. 101.
    Zhu K, Austin N, Devine A, Prince RL. A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J Am Geriatr Soc. 2010;58(11):2063–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Moreira-Pfrimer LD, Pedrosa MA, Teixeira L, Lazaretti-Castro M. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann Nutr Metab. 2009;54(4):291–300.PubMedCrossRefGoogle Scholar
  103. 103.
    Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL. Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int. 2011;22(3):859–71.PubMedGoogle Scholar
  104. 104.
    Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2011;59(12):2291–300.PubMedCrossRefGoogle Scholar
  105. 105.
    Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int. 2009;20(2):315–22.PubMedCrossRefGoogle Scholar
  106. 106.
    Ceglia L, Niramitmahapanya S, da Silva Morais M, Rivas DA, Harris SS, Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B. A randomized study on the effect of vitamin D3 supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab. 2013;98(12):E1927–35.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, Petermans J, Reginster JY, Bruyère O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336–45.PubMedCrossRefGoogle Scholar
  108. 108.
    Annweiler C, Schott AM, Berrut G, Fantino B, Beauchet O. Vitamin D-related changes in physical performance: a systematic review. J Nutr Health Aging. 2009;13:893–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Latham NK, Anderson CS, Reid IR. Effects of vitamin D supplementation on strength, physical performance, and falls in older persons: a systematic review. J Am Geriatr Soc. 2003;51(9):1219–26.PubMedCrossRefGoogle Scholar
  110. 110.
    Kenny AM, Biskup B, Robbins B, Marcella G, Burleson JA. Effects of vitamin D supplementation on strength, physical function, and health perception in older, community-dwelling men. J Am Geriatr Soc. 2003;51:1762–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Rosendahl-Riise H, Spielau U, Ranhoff AH, Gudbrandsen OA, Dierkes J. Vitamin D supplementation and its influence on muscle strength and mobility in community-dwelling older persons: a systematic review and meta-analysis. J Hum Nutr Diet. 2016;30:3.  https://doi.org/10.1111/jhn.12394.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendaño M, Hirsch S. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp Gerontol. 2006;41:746–52.PubMedCrossRefGoogle Scholar
  113. 113.
    Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, Faliva MA, Solerte BS, Fioravanti M, Lukaski H, Perna S. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr. 2016;103:830–40.PubMedCrossRefGoogle Scholar
  114. 114.
    Glendenning P, Zhu K, Inderjeeth C, Howat P, Lewis JR, Prince RL. Effects of three-monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. J Bone Miner Res. 2012;27(1):170–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Gupta R, Sharma U, Gupta N, Kalaivani M, Singh U, Guleria R, Jagannathan NR, Goswami R. Effect of cholecalciferol and calcium supplementation on muscle strength and energy metabolism in vitamin D-deficient Asian Indians: a randomized, controlled trial. Clin Endocrinol. 2010;73(4):445–51.Google Scholar
  116. 116.
    Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303:1815–22.PubMedCrossRefGoogle Scholar
  117. 117.
    Rossini M, Gatti D, Viapiana O, Fracassi E, Idolazzi L, Zanoni S, Adami S. Short-term effects on bone turnover markers of a single high dose of oral vitamin D(3). J Clin Endocrinol Metab. 2012;97:E622–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Girgis C, Clifton-Bligh R, Turner N, Lau S, Gunton J. Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clin Endocrinol. 2014;80:169–81.CrossRefGoogle Scholar
  119. 119.
    Snijder M, Van Schoor N, Pluijm S, Van Dam R, Visser M, Lips P. Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab. 2006;91:2980–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Marcelli C, Chavoix C, Dargent-Molina P. Beneficial effects of vitamin D on falls and fractures: is cognition rather than bone or muscle behind these benefits? Osteoporos Int. 2015;26:1–10.PubMedCrossRefGoogle Scholar
  121. 121.
    Eriksson S, Gustafson Y, Lundin-Olsson L. Risk factors for falls in people with and without a diagnose of dementia living in residential care facilities: a prospective study. Arch Gerontol Geriatr. 2008;46:293–306.PubMedCrossRefGoogle Scholar
  122. 122.
    Van der Schaft J, Koek H, Dijkstra E, Verhaar H, van der Schouw Y, Emmelot-Vonk M. The association between vitamin D and cognition: a systematic review. Ageing Res Rev. 2013;12:1013–23.PubMedCrossRefGoogle Scholar
  123. 123.
    Sutherland M, Somerville M, Yoong L, Bergeron C, Haussler M, Mclachlan D. Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin-28K mRNA levels. Brain Res Mol Brain Res. 1992;13:239–50.PubMedCrossRefGoogle Scholar
  124. 124.
    Annweiler C, Montero-Odasso M, Schott AM, Berrut G, Fantino B, Beauchet O. Fall prevention and vitamin D in the elderly: an overview of the key role of the non-bone effects. J Neuroeng Rehabil. 2010;7:50.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Soysal P, Yay A, Isik AT. Does vitamin D deficiency increase orthostatic hypotension risk in the elderly patients? Arch Gerontol Geriatr. 2014;59:74–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, Lamb SE. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;(9):CD007146.Google Scholar
  127. 127.
    Compston J, Bowring C, Cooper A, Cooper C, Davies C, Francis R, Kanis JA, Marsh D, McCloskey EV, Reid DM, Selby P, National Osteoporosis Guideline Group. Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013. Maturitas. 2013;75(4):392–6.PubMedCrossRefGoogle Scholar
  128. 128.
    American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for prevention of falls and their consequences. J Am Geriatr Soc. 2014;62:147–52.CrossRefGoogle Scholar
  129. 129.
    Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB. Effect of vitamin D on falls: a meta-analysis. JAMA. 2004;291(16):1999–2006.PubMedCrossRefGoogle Scholar
  130. 130.
    Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, Wong JB, Egli A, Kiel DP, Henschkowski J. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ. 2009;339:b3692.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bischoff-Ferrari HA, Willett WC, Orav EJ, Kiel DP, Dawson-Hughes B. Re: fall prevention with vitamin D. Clarifications needed. 2011. http://www.bmj.com/content/339/bmj.b3692/reply.
  132. 132.
    Bischoff HA, Stähelin HB, Dick W, Akos R, Knecht M, Salis C, Nebiker M, Theiler R, Pfeifer M, Begerow B, Lew RA, Conzelmann M. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res. 2003;18(2):343–51.PubMedCrossRefGoogle Scholar
  133. 133.
    Moyer V. Prevention of falls in community dwelling older adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157:197–204.PubMedCrossRefGoogle Scholar
  134. 134.
    Heaney RP. The case for improving vitamin D status. J Steroid Biochem Mol Biol. 2007;103:635–41.PubMedCrossRefGoogle Scholar
  135. 135.
    Caprio M, Infante M, Calanchini M, Mammi C, Fabbri A. Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat Weight Disord. 2016;22:27.  https://doi.org/10.1007/s40519-016-0312-6.CrossRefPubMedGoogle Scholar
  136. 136.
    Bischoff-Ferrari HA, Dawson-Hughes B, Stocklin E, Sidelnikov E, Willett WC, Edel JO, Stahelin HB, Wolfram S, Jetter A, Schwager J, Henschkowski J, von Eckardstein A, Egli A. Oral supplementation with 25(OH)D3 versus vitamin D3: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J Bone Miner Res. 2012;27(1):160–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Jetter A, Egli A, Dawson-Hughes B, Staehelin HB, Stoecklin E, Goessl R, Henschkowski J, Bischoff-Ferrari HA. Pharmacokinetics of oral vitamin D(3) and calcifediol. Bone. 2014;59:14–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Meyer O, Dawson-Hughes B, Sidelnikov E, Egli A, Grob D, Staehelin HB, Theiler G, Kressig RW, Simmen HP, Theiler R, Bischoff-Ferrari HA. Calcifediol versus vitamin D3 effects on gait speed and trunk sway in young postmenopausal women: a double-blind randomized controlled trial. Osteoporos Int. 2015;26:373–81.PubMedCrossRefGoogle Scholar
  139. 139.
    Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, Dick W, Willett WC, Egli A. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176:175–83.PubMedCrossRefGoogle Scholar
  140. 140.
    Rosendahl-Riise H, Spielau U, Ranhoff AH, Gudbrandsen OA, Dierkes J. Vitamin D supplementation and its influence on muscle strength and mobility in community-dwelling older persons: a systematic review and meta-analysis. J Hum Nutr Diet. 2017;30(1):3–15.PubMedCrossRefGoogle Scholar
  141. 141.
    Rejnmark L. Effects of vitamin D on muscle function and performance: a review of evidence from randomized controlled trials. Ther Adv Chronic Dis. 2011;2:25–37.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giovanni Iolascon
    • 1
  • Antimo Moretti
    • 1
  • Letizia Stefano
    • 1
  • Francesca Gimigliano
    • 2
  1. 1.Department of Medical and Surgical Specialties and DentistryUniversity of Campania “Luigi Vanvitelli”NaplesItaly
  2. 2.Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly

Personalised recommendations