Complex Aneurysm: The Unpredictable Pathological Entity

  • L. Pescatori
  • M. P. Tropeano
  • A. Santoro
Conference paper
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 129)


Background. Surgical treatment of complex aneurysms often requires the execution of a revascularization procedure. Even if avoiding the concomitant trapping of the aneurysm during the bypass procedure (waiting for the subsequent endovascular or spontaneous closure) permits one to verify the graft’s patency and patient’s adaptation to increased flow, the hemodynamic changes induced by the bypass may cause the aneurysmal rupture. Whether or not to perform the concomitant trapping of the aneurysm still remains a dilemma. Here we illustrate our management protocol through the critical analysis of some illustrative cases of our series.

Materials and methods. Between 1990 and 2016, 48 of 157 patients affected by complex aneurysms underwent a revascularization procedure. In 19 cases (1990–1997) only a bypass procedure was performed. Spontaneous or endovascular closure was obtained within the first postoperative week once the graft patency had been verified (staged revascularization strategy). In the remaining 29 cases (1997–2016) the revascularization procedure and the closure of the aneurysm were performed simultaneously during the same surgical procedure (single-stage strategy).

Results. In the staged revascularization era, one patient died because of the rupture of the aneurysm before its closure.

In the single-stage era no further cases of rebleeding were observed. Neurologic status of this group was unvaried or improved.

Conclusions. Given the unpredictable response of complex aneurysms to the hemodynamic changes induced by the revascularization, in our opinion it is always preferable to perform complete or at least incomplete trapping of the aneurysm during the bypass procedure.


Bypass Complex aneurysm Hemodynamic Trapping 


  1. 1.
    Hanel RA, Spetzler RF. Surgical treatment of complex intracranial aneurysms. Neurosurgery. 2008;62(6 suppl 3):1289–97.PubMedGoogle Scholar
  2. 2.
    Mohit AA, Sekhar LN, Natarajan SK, Britz GW, Ghodke B. High-flow bypass grafts in the management of complex intracranial aneurysms. Neurosurgery. 2007;60(2 Suppl 1):ONS105–22.PubMedGoogle Scholar
  3. 3.
    Scott RM, Liu HC, Yuan R, Adelman L. Rupture of a previously unruptured giant middle cerebral artery aneurysm after extracranial-intracranial bypass surgery. Neurosurgery. 1982;10(5):600–3.CrossRefGoogle Scholar
  4. 4.
    Benashvili GM, Alexander LF, Zubkov YN. Thrombosis of a giant aneurysm after extracranial-intracranial bypass. Neurosurgery. 1992;31(2):360–4.CrossRefGoogle Scholar
  5. 5.
    Cantore G, Santoro A, Da Pian R. Spontaneous occlusion of supraclinoid aneurysms after the creation of extra-intracranial by passes using long grafts: report of two cases. Neurosurgery. 1999;44(1):216–9.CrossRefGoogle Scholar
  6. 6.
    Haque R, Kellner C, Solomon RA. Spontaneous thrombosis of a giant fusiform aneurysm following extracranial-intracranial bypasssurgery. J Neurosurg. 2009;110(3):469–674.CrossRefGoogle Scholar
  7. 7.
    Anson JA, Stone JL, Crowell RM. Rupture of a giant carotid aneurysm after extracranial-to-intracranial bypass surgery. Neurosurgery. 1991;28(1):142–7.CrossRefGoogle Scholar
  8. 8.
    Heros RC, Ameri AM. Rupture of a giant basilar aneurysm after saphenous vein interposition graft to the posterior cerebral artery. Case report. J Neurosurg. 1984;61(2):387–90.CrossRefGoogle Scholar
  9. 9.
    Hopkins LN, Grand W. Extracranial-intracranial arterial bypass in the treatment of aneurysms of the carotid and middle cerebralarteries. Neurosurgery. 1979;5(1 Pt 1):21–31.CrossRefGoogle Scholar
  10. 10.
    Cantore G, Santoro A, Guidetti G, Delfinis CP, Colonnese C, Passacantilli E. Surgical treatment of giant intracranial aneurysms: current viewpoint. Neurosurgery. 2008;63(4 Suppl 2):279–89.PubMedGoogle Scholar
  11. 11.
    Kawaguchi T, Nishimura S, Kanamori M, Takazawa H, Omodaka S, Sato K, Maeda N, Yokoyama Y, Midorikawa H, Sasaki T, Nishijima M. Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. J Neurosurg. 2012;117(4):774–80.CrossRefGoogle Scholar
  12. 12.
    Yeh H, Tomsick TA. Obliteration of a giant carotid aneurysm after extracranial-to-intracranial bypass surgery: case report. Surg Neurol. 1997;48(5):473–6.CrossRefGoogle Scholar
  13. 13.
    Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2014;35(7):1254–62.CrossRefGoogle Scholar
  14. 14.
    Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluiddynamics analysis. Cerebrovasc Dis. 2012;34(2):121–9.CrossRefGoogle Scholar
  15. 15.
    Russin J, Babiker H, Ryan J, Rangel-Castilla L, Frakes D, Nakaji P. Computational fluid dynamics to evaluate the management of a giant internal carotid artery aneurysm. World Neurosurg. 2015;83(6):1057–65.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. Pescatori
    • 1
  • M. P. Tropeano
    • 1
  • A. Santoro
    • 1
  1. 1.Department of NeurosurgerySapienza University of RomeRomeItaly

Personalised recommendations