\(P^5\): Planner-less Proofs of Probabilistic Parameterized Protocols

  • Lenore D.  ZuckEmail author
  • Kenneth L. McMillan
  • Jordan Torf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10747)


Liveness of many probabilistic parameterized protocols are proven by first crafting a family of sequences of “good"random draws, thus, in effect “de-probabilizing" the system, and then proving the system just as one would for a non-probabilistic parameterized system. The family of “good"random draws (known in different names, such as “planner" and “strategy") is often an intricate piece of machinery, arising from the need to reason about a parameterized Markov Decision Process (MDP). In effect, it represents a parameterized strategy for an infinite game played between a probabilistic player and a non-deterministic adversary.

We present a novel approach to the problem that avoids the need to de-probabilize the system. First, we abstract the parameterized MDP to a finite MDP. The probabilistic choices of this abstraction are drawn not from an independent identically distributed random variable, but instead from a parameterized Markov chain. That is, the distribution of the random variable at any time is dependent on its history and also on the system’s parameters. Then, we prove properties about infinite behaviors of the Markov chain and transfer these to the finite MDP. At this point, the proof can be completed by ordinary finite-state model checking. By using abstraction to separate parameterization from nondeterminism, we eliminate the parameterized game and avoid the need for a planner.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IEEE standard for a high-performance serial bus. IEEE standard 1394–1008 (2008)Google Scholar
  2. 2.
    Apt, K.R., Kozen, D.: Limits for automatic program verification of finite-state concurrent systems. Inf. Process. Lett. 22(6) (1986)Google Scholar
  3. 3.
    Arons, T., Pnueli, A., Ruah, S., Xu, Y., Zuck, L.: Parameterized verification with automatically computed inductive assertions? In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  4. 4.
    Arons, T., Pnueli, A., Zuck, L.: Parameterized verification by probabilistic abstraction. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS, vol. 2620, pp. 87–102. Springer, Heidelberg (2003).
  5. 5.
    Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-stabilizing leader election protocols. In: PODC 1999, pp. 199–207 (1999)Google Scholar
  6. 6.
    Cohen, S., Lehmann, D., Pnueli, A.: Symmetric and economical solutions to the mutual exclusion problem in a distributed system. Theoretical Comput. Sci. 34, 215–225 (1984)Google Scholar
  7. 7.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th Annual Symposium on Principles of Programming Languages. ACM Press (1977)Google Scholar
  8. 8.
    Allen Emerson, E., Kahlon, V.: Reducing model checking of the many to the few. In: McAllester, D. (ed.) CADE-17. LNCS (LNAI), vol. 1831, pp. 236–254. Springer, Heidelberg (2000). CrossRefGoogle Scholar
  9. 9.
    Allen Emerson, E., Namjoshi, K.S.: Automatic verification of parameterized synchronous systems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 87–98. Springer, Heidelberg (1996). CrossRefGoogle Scholar
  10. 10.
    Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL 1995, San Francisco (1995)Google Scholar
  11. 11.
    Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 123–138. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  12. 12.
    Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent programs. In: POPL 1982, pp. 1–6 (1982)Google Scholar
  13. 13.
    Herman, T.: Probabilistic self-stabilization. Information Processing Letters 35(2), 63–67 (1990)Google Scholar
  14. 14.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing mutual exclusion. In: Proc. 9th Annual ACM Symposium on Principles of Distributed Computing (PODC 1990), pp. 119–131. ACM New York (1990)Google Scholar
  15. 15.
    Itai, A., Rodeh, M.: Symmetry breaking in distributed network. In: FOCS 1981, pp. 245–260 (1981)Google Scholar
  16. 16.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings of 44th Symposium on Foundations of Computer Science (FOCS 2003), Cambridge, MA, USA, October 11-14, pp. 482–491 (2003)Google Scholar
  17. 17.
    Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Information and Computation 163, 2000 (1999)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kesten, Y., Pnueli, A.: Control and data abstraction: The cornerstones of practical formal verification. Software Tools for Technology Transfer 4, 2000 (2000)Google Scholar
  19. 19.
    Lehmann, D., Rabin, M.: On the advantages of free choice: A symmetric and fully distibuted solution to the dining philosophers problem (exended abstract). In: POPL 1981, pp. 133–138 (1981)Google Scholar
  20. 20.
    Lin, A.W., Rümmer, P.: Liveness of randomised parameterised systems under arbitrary schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 112–133. Springer, Cham (2016). Google Scholar
  21. 21.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag (1992)Google Scholar
  22. 22.
    McMillan, K.L.: A compositional rule for hardware design refinement. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 24–35. Springer, Heidelberg (1997). CrossRefGoogle Scholar
  23. 23.
    Pnueli, A. : On the extremely fair treatment of probabilistic algorithms. In: STOC 1983, pp. 278–290. ACM New York (1983)Google Scholar
  24. 24.
    Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  25. 25.
    Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1, \(\infty \))-counter abstraction. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  26. 26.
    Pnueli, A., Zuck, L.D.: Probabilistic verification by tableaux. In: LICS 1986, pp. 322–331 (1986)Google Scholar
  27. 27.
    Pnueli, A., Zuck, L.D.: Verification of multiprocess probabilistic protocols. Distributed Computing 1(1), 53–72 (1986)CrossRefzbMATHGoogle Scholar
  28. 28.
    Pnueli, A., Zuck, L.D.: Probabilistic verification. Inf. Comput. 103(1), 1–29 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rabin, M.: The choice coordination problem. Acta Informatica 17, 121–134 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shakespeare, W.: The Tragedy of Macbeth. ca. 1606 (4.3.225)Google Scholar
  31. 31.
    Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 332–344 (1986)Google Scholar
  32. 32.
    Zuck, L., Pnueli, A., Kesten, Y.: Automatic verification of probabilistic free choice. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 208–224. Springer, Heidelberg (2002). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Lenore D.  Zuck
    • 1
    Email author
  • Kenneth L. McMillan
    • 2
  • Jordan Torf
    • 1
  1. 1.University of Illinois at ChicagoChicagoUSA
  2. 2.Microsoft ResearchRedmondUSA

Personalised recommendations