In Pursuit of Precision Medicine in the Critically Ill

  • M. Shankar-HariEmail author
  • C. Summers
  • K. Baillie
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


For it is not enough to recognize that all our knowledge is, in a greater or less degree, uncertain and vague; it is necessary, at the same time, to learn to act upon the best hypothesis without dogmatically believing it (From ‘Philosophy for Laymen’ by Bertrand Russell).

Critical care medicine is, at present, a specialty of broad syndromes. This reflects the similarity in therapeutic approach required for the final common physiology that follows from many different pathological processes. Since their original definitions and descriptions, sepsis and acute respiratory distress syndrome (ARDS) are the two clinical conditions that have shaped health policy and dominated the research agenda in critical care [1, 2]. It is a truism to state that these are conglomerates of numerous different sub‐syndromes; to make this observation is simply to restate the definition of sepsis and ARDS as common patterns arising from numerous different injuries. But it is also clear that,...


  1. 1.
    Singer M, Deutschman CS, Seymour CW et al (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801–810CrossRefPubMedGoogle Scholar
  2. 2.
    Force ADT, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533Google Scholar
  3. 3.
    Rose G (2001) Sick individuals and sick populations. Int J Epidemiol 30:427–432CrossRefGoogle Scholar
  4. 4.
    Seymour CW, Liu VX, Iwashyna TJ et al (2016) Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:762–774CrossRefPubMedGoogle Scholar
  5. 5.
    Shankar-Hari M, Phillips GS, Levy ML et al (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:775–787CrossRefPubMedGoogle Scholar
  6. 6.
    Ferguson ND, Fan E, Camporota L et al (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38:1573–1582CrossRefGoogle Scholar
  7. 7.
    Aalen OO, Valberg M, Grotmol T, Tretli S (2015) Understanding variation in disease risk: the elusive concept of frailty. Int J Epidemiol 44:1408–1421CrossRefGoogle Scholar
  8. 8.
    Smith GD (2011) Epidemiology, epigenetics and the ‘Gloomy Prospect’: embracing randomness in population health research and practice. Int J Epidemiol 40:537–562CrossRefGoogle Scholar
  9. 9.
    Pearson H (2011) Epidemiology: study of a lifetime. Nature 471:20–24CrossRefGoogle Scholar
  10. 10.
    Mayr FB, Yende S, Angus DC (2014) Epidemiology of severe sepsis. Virulence 5:4–11CrossRefGoogle Scholar
  11. 11.
    Petersen L, Sorensen TI, Andersen PK (2010) A shared frailty model for case-cohort samples: parent and offspring relations in an adoption study. Stat Med 29:924–931CrossRefGoogle Scholar
  12. 12.
    Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727–732CrossRefGoogle Scholar
  13. 13.
    Baillie JK (2014) Translational genomics. Targeting the host immune response to fight infection. Science 344:807–808CrossRefGoogle Scholar
  14. 14.
    Hill AV (2012) Evolution, revolution and heresy in the genetics of infectious disease susceptibility. Philos Trans R Soc Lond B Biol Sci 367:840–849CrossRefPubMedGoogle Scholar
  15. 15.
    Everitt AR, Clare S, Pertel T et al (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484:519–523CrossRefPubMedGoogle Scholar
  16. 16.
    Glass WG, McDermott DH, Lim JK et al (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203:35–40CrossRefPubMedGoogle Scholar
  17. 17.
    Singer M (2014) The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5:66–72CrossRefGoogle Scholar
  18. 18.
    van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG (2017) The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 17:407–420CrossRefGoogle Scholar
  19. 19.
    Sivakumaran S, Agakov F, Theodoratou E (2011) Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 89:607–618CrossRefPubMedGoogle Scholar
  20. 20.
    Rautanen A, Mills TC, Gordon AC et al (2015) Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. Lancet Respir Med 3:53–60CrossRefPubMedGoogle Scholar
  21. 21.
    Sweeney TE, Shidham A, Wong HR, Khatri P (2015) A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci Transl Med 7:287ra271CrossRefGoogle Scholar
  22. 22.
    Burnham KL, Davenport EE, Radhakrishnan J et al (2017) Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. Am J Respir Crit Care Med 196:328–339CrossRefPubMedGoogle Scholar
  23. 23.
    Davenport EE, Burnham KL, Radhakrishnan J et al (2016) Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med 4:259–271CrossRefPubMedGoogle Scholar
  24. 24.
    Rautanen A, Mills TC, Gordon AC et al (2015) Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. Lancet Respir Med 3(1):53–60CrossRefPubMedGoogle Scholar
  25. 25.
    Scicluna BP, van Vught LA, Zwinderman AH et al (2017) Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med 5:816–826CrossRefGoogle Scholar
  26. 26.
    Shankar-Hari M, Harrison DA, Rowan KM (2016) Differences in impact of definitional elements on mortality precludes international comparisons of sepsis epidemiology—a cohort study illustrating the need for standardized reporting. Crit Care Med 44:2223–2230CrossRefGoogle Scholar
  27. 27.
    Dolinay T, Kim YS, Howrylak J et al (2012) Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med 185:1225–1234CrossRefPubMedGoogle Scholar
  28. 28.
    Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122:2731–2740CrossRefPubMedGoogle Scholar
  29. 29.
    Xiao W, Mindrinos MN, Seok J et al (2011) A genomic storm in critically injured humans. J Exp Med 208:2581–2590CrossRefPubMedGoogle Scholar
  30. 30.
    Bos LD, Schouten LR, van Vught LA et al (2017) Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis. Thorax 72:876–883CrossRefGoogle Scholar
  31. 31.
    Calfee CS, Janz DR, Bernard GR et al (2015) Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest 147:1539–1548CrossRefGoogle Scholar
  32. 32.
    Famous KR, Delucchi K, Ware LB et al (2017) Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med 195:331–338PubMedCentralPubMedGoogle Scholar
  33. 33.
    Calfee CS, Delucchi K, Parsons PE et al (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2:611–620CrossRefPubMedGoogle Scholar
  34. 34.
    Calfee C, Matthay M (2010) Clinical immunology: culprits with evolutionary ties. Nature 464:41–42CrossRefPubMedGoogle Scholar
  35. 35.
    Senn S (2016) Mastering variation: variance components and personalised medicine. Stat Med 35:966–977CrossRefGoogle Scholar
  36. 36.
    Seymour CW, Gesten F, Prescott HC et al (2017) Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 376:2235–2244CrossRefPubMedGoogle Scholar
  37. 37.
    Shankar-Hari M, Rubenfeld GD (2017) The use of enrichment to reduce statistically indeterminate or negative trials in critical care. Anaesthesia 72:560–565CrossRefGoogle Scholar
  38. 38.
    Iwashyna TJ, Burke JF, Sussman JB, Prescott HC, Hayward RA, Angus DC (2015) Implications of heterogeneity of treatment effect for reporting and analysis of randomized trials in critical care. Am J Respir Crit Care Med 192:1045–1051CrossRefPubMedGoogle Scholar
  39. 39.
    Welton NJ, Soares MO, Palmer S et al (2015) Accounting for heterogeneity in relative treatment effects for use in cost-effectiveness models and value-of-information analyses. Med Decis Making 35:608–621CrossRefPubMedGoogle Scholar
  40. 40.
    Trusheim MR, Berndt ER, Douglas FL (2007) Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov 6:287–293CrossRefGoogle Scholar
  41. 41.
    Wong HR, Atkinson SJ, Cvijanovich NZ et al (2016) Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Crit Care Med 44:e1000–e1003CrossRefPubMedGoogle Scholar
  42. 42.
    Bentzer P, Fjell C, Walley KR, Boyd J, Russell JA (2016) Plasma cytokine levels predict response to corticosteroids in septic shock. Intensive Care Med 42:1970–1979CrossRefGoogle Scholar
  43. 43.
    Russell CD, Baillie J (2017) Treatable traits and therapeutic targets. Curr Opin Syst Biol 2:140–146CrossRefGoogle Scholar
  44. 44.
    Lotvall J, Akdis CA, Bacharier LB et al (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127:355–360CrossRefGoogle Scholar
  45. 45.
    Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PloS Comput Biol 8:e1002375CrossRefPubMedGoogle Scholar
  46. 46.
    Forrest AR, Kawaji H, Rehli M et al (2014) A promoter-level mammalian expression atlas. Nature 507:462–470CrossRefGoogle Scholar
  47. 47.
    Iyer G, Hanrahan AJ, Milowsky MI et al (2012) Genome sequencing identifies a basis for everolimus sensitivity. Science 338:221CrossRefPubMedGoogle Scholar
  48. 48.
    Prasad V (2016) Perspective: the precision-oncology illusion. Nature 537:S63–S63CrossRefGoogle Scholar
  49. 49.
    Le Tourneau C, Delord JP, Goncalves A et al (2015) Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16:1324–1334CrossRefGoogle Scholar
  50. 50.
    Stewart DJ, Kurzrock R (2013) Fool’s gold, lost treasures, and the randomized clinical trial. BMC Cancer 13:193CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Guy’s and St Thomas’ NHS Foundation TrustSt Thomas’ HospitalLondonUK
  2. 2.Division of Infection, Immunity and InflammationKings College LondonLondonUK
  3. 3.Department of MedicineUniversity of Cambridge School of Clinical MedicineCambridgeUK
  4. 4.Intensive Care UnitRoyal Infirmary of EdinburghEdinburghUK
  5. 5.Roslin InstituteUniversity of EdinburghEaster Bush, MidlothianUK

Personalised recommendations