Orthopedic Applications of Silver and Silver Nanoparticles

  • Jason Kang
  • Krystal Hughes
  • Malcolm Xing
  • Bingyun Li


Silver (Ag) has been known for its antimicrobial properties for centuries but has received renewed interest in recent years primarily due to the rise of antibiotic-resistance and the development of Ag nanoparticles (AgNPs). In orthopedics, multiple applications containing Ag are being developed including Ag dressings, Ag-coated prosthetic implants, and Ag-based bone cements. In this chapter, we review the antimicrobial mechanisms as well as the delivery and metabolic pathways of Ag and the primary uses of Ag and AgNPs in orthopedic applications, focusing on their antimicrobial activity, toxicity, and clinical uses.


Nanotechnology Nanoparticle Silver Antimicrobial Infection Bacteria Toxicity Nanotoxicity Clinical use Antibiotic resistance Megaprosthese Bone cement In vitro In vivo 



We acknowledge financial support from AO Foundation (Project S-13-15L was supported by the AO Foundation), Osteosynthesis & Trauma Care Foundation, the West Virginia National Aeronautics and Space Administration Experimental Program to Stimulate Competitive Research (WV NASA EPSCoR), NIH Grant P20GM103434, and the National Institute of General Medical Sciences of the National Institutes of Health under Award Number 2U54GM104942-02. This work was also supported by the Office of the Assistant Secretary of Defense for Health Affairs, through the Peer Reviewed Medical Research Program, Discovery Award under Award No. W81XWH-17-1-0603. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the funding agencies. We thank Suzanne Danley for proofreading.


  1. 1.
    Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 2017. Scholar
  3. 3.
    Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52(6):1636–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Drake PL, Hazelwood KJ. Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg. 2005;49(7):575–85.PubMedGoogle Scholar
  6. 6.
    Gunawan C, Marquis CP, Amal R, Sotiriou GA, Rice SA, Harry EJ. Widespread and indiscriminate nanosilver use: genuine potential for microbial resistance. ACS Nano. 2017;11(4):3438–45.CrossRefPubMedGoogle Scholar
  7. 7.
    Walker M, Parsons D. The biological fate of silver ions following the use of silver-containing wound care products—a review. Int Wound J. 2014;11(5):496–504.CrossRefPubMedGoogle Scholar
  8. 8.
    National Collaborating Centre for Ws, Children’s H. National Institute for Health and Clinical Excellence: guidance. Surgical site infection: prevention and treatment of surgical site infection. London: RCOG Press National Collaborating Centre for Women’s and Children’s Health; 2008.Google Scholar
  9. 9.
    Leaper D. Appropriate use of silver dressings in wounds: an expert working group consensus. Wounds Int. 2012;9(5):461–4.CrossRefGoogle Scholar
  10. 10.
    Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen. 2007;15(1):94–104.CrossRefPubMedGoogle Scholar
  11. 11.
    Parsons D, Meredith K, Rowlands VJ, Short D, Metcalf DG, Bowler PG. Enhanced performance and mode of action of a novel antibiofilm hydrofiber(R) wound dressing. Biomed Res Int. 2016;2016:7616471. PMCID:PMC5136405CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55(1):59–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Bourdillon KA, Delury CP, Cullen BM. Biofilms and delayed healing—an in vitro evaluation of silver- and iodine-containing dressings and their effect on bacterial and human cells. Int Wound J 2017. Scholar
  14. 14.
    Mohseni M, Shamloo A, Aghababaei Z, Vossoughi M, Moravvej H. Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: in vitro study. Artif Organs. 2016;40(8):765–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Lin YH, Hsu WS, Chung WY, Ko TH, Lin JH. Silver-based wound dressings reduce bacterial burden and promote wound healing. Int Wound J. 2016;13(4):505–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Paddle-Ledinek JE, Nasa Z, Cleland HJ. Effect of different wound dressings on cell viability and proliferation. Plast Reconstr Surg. 2006;117(7 Suppl):110S–8S. discussion 9S–20SCrossRefPubMedGoogle Scholar
  17. 17.
    Hiro ME, Pierpont YN, Ko F, Wright TE, Robson MC, Payne WG. Comparative evaluation of silver-containing antimicrobial dressings on in vitro and in vivo processes of wound healing. Eplasty. 2012;12:e48. PMCID:PMC3471607PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gee Kee E, Stockton K, Kimble RM, Cuttle L, McPhail SM. Cost-effectiveness of silver dressings for paediatric partial thickness burns: an economic evaluation from a randomized controlled trial. Burns. 2017;43(4):724–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Munteanu A, Florescu IP, Nitescu C. A modern method of treatment: the role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds. J Med Life. 2016;9(3):306–15. PMCID:PMC5154321PubMedPubMedCentralGoogle Scholar
  20. 20.
    Jude EB, Apelqvist J, Spraul M, Martini J. Prospective randomized controlled study of Hydrofiber dressing containing ionic silver or calcium alginate dressings in non-ischaemic diabetic foot ulcers. Diabet Med. 2007;24(3):280–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Jemec GB, Kerihuel JC, Ousey K, Lauemoller SL, Leaper DJ. Cost-effective use of silver dressings for the treatment of hard-to-heal chronic venous leg ulcers. PLoS One. 2014;9(6):e100582. PMCID:PMC4063949CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplast. 2008;23(7):984–91.CrossRefGoogle Scholar
  23. 23.
    Lamagni T. Epidemiology and burden of prosthetic joint infections. J Antimicrob Chemother. 2014;69(Suppl 1):i5–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Grosso MJ, Berg A, LaRussa S, Murtaugh T, Trofa DP, Geller JA. Silver-impregnated occlusive dressing reduces rates of acute periprosthetic joint infection after total joint arthroplasty. J Arthroplast. 2017;32(3):929–32.CrossRefGoogle Scholar
  25. 25.
    Cai J, Karam JA, Parvizi J, Smith EB, Sharkey PF. Aquacel surgical dressing reduces the rate of acute PJI following total joint arthroplasty: a case-control study. J Arthroplast. 2014;29(6):1098–100.CrossRefGoogle Scholar
  26. 26.
    Springer BD, Beaver WB, Griffin WL, Mason JB, Odum SM. Role of surgical dressings in total joint arthroplasty: a randomized controlled trial. Am J Orthop (Belle Mead NJ). 2015;44(9):415–20.Google Scholar
  27. 27.
    Ravenscroft MJ, Harker J, Buch KA. A prospective, randomised, controlled trial comparing wound dressings used in hip and knee surgery: aquacel and tegaderm versus cutiplast. Ann R Coll Surg Engl. 2006;88(1):18–22.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jurczak F, Dugre T, Johnstone A, Offori T, Vujovic Z, Hollander D. Randomised clinical trial of Hydrofiber dressing with silver versus povidone-iodine gauze in the management of open surgical and traumatic wounds. Int Wound J. 2007;4(1):66–76.CrossRefPubMedGoogle Scholar
  29. 29.
    Keen JS, Desai PP, Smith CS, Suk M. Efficacy of hydrosurgical debridement and nanocrystalline silver dressings for infection prevention in type II and III open injuries. Int Wound J. 2012;9(1):7–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Kadar A, Eisenberg G, Yahav E, Drexler M, Salai M, Steinberg EL. Surgical site infection in elderly patients with hip fractures, silver-coated versus regular dressings: a randomised prospective trial. J Wound Care. 2015;24(10):441–2. 4–5CrossRefPubMedGoogle Scholar
  31. 31.
    Fries CA, Ayalew Y, Penn-Barwell JG, Porter K, Jeffery SL, Midwinter MJ. Prospective randomised controlled trial of nanocrystalline silver dressing versus plain gauze as the initial post-debridement management of military wounds on wound microbiology and healing. Injury. 2014;45(7):1111–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Muller ME. Internal fixation for fresh fractures and for non-union. Proc R Soc Med. 1963;56:455–60. PMCID:PMC1897011PubMedPubMedCentralGoogle Scholar
  33. 33.
    Harris WH, Sledge CB. Total hip and total knee replacement. N Engl J Med. 1990;323(11):725–31.CrossRefPubMedGoogle Scholar
  34. 34.
    Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis. 2006;19(4):349–56.CrossRefPubMedGoogle Scholar
  36. 36.
    Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2(4):176–94.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Coester LM, Nepola JV, Allen J, Marsh JL. The effects of silver coated external fixation pins. Iowa Orthop J. 2006;26:48–53. PMCID:PMC1888577PubMedPubMedCentralGoogle Scholar
  38. 38.
    Masse A, Bruno A, Bosetti M, Biasibetti A, Cannas M, Gallinaro P. Prevention of pin track infection in external fixation with silver coated pins: clinical and microbiological results. J Biomed Mater Res. 2000;53(5):600–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Wassall MA, Santin M, Isalberti C, Cannas M, Denyer SP. Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins. J Biomed Mater Res. 1997;36(3):325–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Collinge CA, Goll G, Seligson D, Easley KJ. Pin tract infections: silver vs uncoated pins. Orthopedics. 1994;17(5):445–8.PubMedGoogle Scholar
  41. 41.
    Bosetti M, Masse A, Tobin E, Cannas M. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials. 2002;23(3):887–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Gkavardina A, Tsagozis P. The use of megaprostheses for reconstruction of large skeletal defects in the extremities: a critical review. Open Orthop J. 2014;8:384–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schmidt-Braekling T, Streitbuerger A, Gosheger G, Boettner F, Nottrott M, Ahrens H, Dieckmann R, Guder W, Andreou D, Hauschild G, Moellenbeck B, Waldstein W, Hardes J. Silver-coated megaprostheses: review of the literature. Eur J Orthop Surg Traumatol. 2017;27(4):483–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. BioMed Eng Online. 2006;5:22.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hardes J, Streitburger A, Ahrens H, Nusselt T, Gebert C, Winkelmann W, Battmann A, Gosheger G. The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines. Sarcoma. 2007;2007:26539. PMCID:PMC1920591CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C. Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25(24):5547–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR, Tillman RM. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J. 2015;97-b(2):252–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Hardes J, von Eiff C, Streitbuerger A, Balke M, Budny T, Henrichs MP, Hauschild G, Ahrens H. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol. 2010;101(5):389–95.PubMedGoogle Scholar
  49. 49.
    Scoccianti G, Frenos F, Beltrami G, Campanacci DA, Capanna R. Levels of silver ions in body fluids and clinical results in silver-coated megaprostheses after tumour, trauma or failed arthroplasty. Injury. 2016;47(Suppl 4):S11–S6.CrossRefPubMedGoogle Scholar
  50. 50.
    Glehr M, Leithner A, Friesenbichler J, Goessler W, Avian A, Andreou D, Maurer-Ertl W, Windhager R, Tunn PU. Argyria following the use of silver-coated megaprostheses: no association between the development of local argyria and elevated silver levels. Bone Joint J. 2013;95-b(7):988–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Kose N, Caylak R, Peksen C, Kiremitci A, Burukoglu D, Koparal S, Dogan A. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: In vivo study. Injury. 2016;47(2):320–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Secinti KD, Ozalp H, Attar A, Sargon MF. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J Clin Neurosci. 2011;18(3):391–5.CrossRefPubMedGoogle Scholar
  53. 53.
    Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4(4):157–63.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Spadaro JA, Webster DA, Becker RO. Silver polymethyl methacrylate antibacterial bone cement. Clin Orthop Relat Res. 1979;(143):266–70.Google Scholar
  55. 55.
    Dueland R, Spadaro JA, Rahn BA. Silver antibacterial bone cement. Comparison with gentamicin in experimental osteomyelitis. Clin Orthop Relat Res. 1982;169:264–8.Google Scholar
  56. 56.
    Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004;25(18):4383–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Oei JD, Zhao WW, Chu L, DeSilva MN, Ghimire A, Rawls HR, Whang K. Antimicrobial acrylic materials with in situ generated silver nanoparticles. J Biomed Mater Res B Appl Biomater. 2012;100(2):409–15.CrossRefPubMedGoogle Scholar
  58. 58.
    Prokopovich P, Leech R, Carmalt CJ, Parkin IP, Perni S. A novel bone cement impregnated with silver-tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. Int J Nanomed. 2013;8:2227–37. PMCID:PMC3693822CrossRefGoogle Scholar
  59. 59.
    Slane J, Vivanco J, Rose W, Ploeg HL, Squire M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2015;48:188–96.CrossRefPubMedGoogle Scholar
  60. 60.
    Moojen DJ, Vogely HC, Fleer A, Verbout AJ, Castelein RM, Dhert WJ. No efficacy of silver bone cement in the prevention of methicillin-sensitive Staphylococcal infections in a rabbit contaminated implant bed model. J Orthop Res. 2009;27(8):1002–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Jason Kang
    • 1
  • Krystal Hughes
    • 1
  • Malcolm Xing
    • 2
    • 3
  • Bingyun Li
    • 1
    • 4
  1. 1.Department of Orthopaedics, School of MedicineWest Virginia UniversityMorgantownUSA
  2. 2.Department of Mechanical EngineeringUniversity of ManitobaWinnipegCanada
  3. 3.The Children’s Hospital Research Institute of ManitobaWinnipegCanada
  4. 4.Mary Babb Randolph Cancer CenterMorgantownUSA

Personalised recommendations