Combinatorial Models in the Topological Classification of Singularities of Mappings

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 222)

Abstract

The topological classification of finitely determined map germs \(f:(\mathbb R^n,0)\rightarrow (\mathbb R^p,0)\) is discrete (by a theorem due to R. Thom), hence we want to obtain combinatorial models which codify all the topological information of the map germ f. According to Fukuda’s work, the topology of such germs is determined by the link, which is obtained by taking the intersection of the image of f with a small enough sphere centered at the origin. If \(f^{-1}(0)=\{0\}\), then the link is a topologically stable map \(\gamma :S^{n-1}\rightarrow S^{p-1}\) (or stable if (np) are nice dimensions) and f is topologically equivalent to the cone of \(\gamma \). When \(f^{-1}(0)\ne \{0\}\), the situation is more complicated. The link is a topologically stable map \(\gamma :N\rightarrow S^{p-1}\), where N is a manifold with boundary of dimension \(n-1\). However, in this case, we have to consider a generalized version of the cone, so that f is again topologically equivalent to the cone of the link diagram. We analyze some particular cases in low dimensions, where the combinatorial models are provided by objects which are well known in Computational Geometry, for instance, the Gauss word or the Reeb graph.

Keywords

Finite determinacy Topological classification Gauss word Reeb graph 

2000 Mathmematics Subject Classification

Primary 58K15 Secondary 58K40 58K65 

References

  1. 1.
    Arnold, V.I.: Topological classification of Morse functions and generalisations of Hilbert’s 16-th problem. Math. Phys. Anal. Geom. 10, 227–236 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Batista, E.B., Costa, J.C.F., Nuño-Ballesteros, J.J.: The Reeb graph of a map germ from \({\mathbb{R}}^{3}\) to \({\mathbb{R}}^{2}\) with non isolated zeros. Bull. Braz. Math. Soc.  https://doi.org/10.1007/s00574-017-0058-4
  3. 3.
    Batista, E.B., Costa, J.C.F., Nuño-Ballesteros, J.J.: The cone structure theorem for map germs with non isolated zeros. http://www.uv.es/nuno/Preprints/ConeTheorem.pdf
  4. 4.
    Batista, E.B., Costa, J.C.F., Nuño-Ballesteros, J.J.: The Reeb graph of a map germ from \({\mathbb{R}}^{3}\) to \({\mathbb{R}}^{2}\) with isolated zeros. Proc. Edinb. Math. Soc. 60(2), 319–348 (2017)Google Scholar
  5. 5.
    Costa, J.C.F., Nuño-Ballesteros, J.J.: Topological \(\cal{K}\)-classification of finitely determined map germs. Geom. Dedicata 166, 147–162 (2013)Google Scholar
  6. 6.
    Dehn, M.: Über kombinatorische topologie. Acta Math. 67(1), 123–168 (1936)Google Scholar
  7. 7.
    de Jong, T., Pfister, G.: Local analytic geometry. Basic Theory and Applications. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (2000)Google Scholar
  8. 8.
    Ehresmann, C.: Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, pp. 29–55 (1950); Georges Thone, Liége; Masson et Cie., Paris, 1951Google Scholar
  9. 9.
    Fukuda, T.: Local topological properties of differentiable mappings I. Invent. Math. 65, 227–250 (1981/82)Google Scholar
  10. 10.
    Fukuda, T.: Local topological properties of differentiable mappings II. Tokyo J. Math. 8(2), 501–520 (1985)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gauss, C.F.: Werke VIII, pp. 271–286. Teubner, Leipzig (1900)Google Scholar
  12. 12.
    Gibson, C.G., Wirthmüller, K., du Plessis, A.A., Looijenga, E.J.N.: Topological stability of smooth mappings. Lecture Notes in Mathematics, vol. 552. Springer, Berlin (1976)Google Scholar
  13. 13.
    Golubitsky, M., Guillemin, V.: Stable mappings and their singularities. Graduate Texts in Mathematics, vol. 14. Springer, New York (1973)Google Scholar
  14. 14.
    Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2008)MATHGoogle Scholar
  15. 15.
    Izar, S.A.: Funções de Morse e topologia das superfícies II: Classificação das funções de Morse estáveis sobre superfícies, Métrica no. 35, Estudo e Pesquisas em Matemática, IBILCE, Brazil (1989). http://www.ibilce.unesp.br/Home/Departamentos/Matematica/metrica-35.pdf
  16. 16.
    Mather, J.: Stability of \(C^\infty \) mappings I: the division theorem. Ann. Math. 87(2), 89–104 (1968)Google Scholar
  17. 17.
    Mather, J.: Stability of \(C^\infty \) mappings III: finitely determined mapgerms. Publ. Math. Inst. Hautes Études Sci. 35, 279–308 (1968)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mather, J.: Stability of \(C^\infty \) mappings II: infinitesimal stability implies stability. Ann. Math. 89(2), 254–291 (1969)Google Scholar
  19. 19.
    Mather, J.: Stability of \(C^\infty \) mappings IV: classification of stable germs by \(\mathbb{R}\)-algebras. Publ. Math. Inst. Hautes Études Sci. 37, 223–248 (1969)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mather, J.: Stability of \(C^\infty \) mappings V: transversality. Adv. Math. 4, 301–336 (1970)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mather, J.: Stability of \(C^\infty \) mappings VI: the nice dimensions. In: Proceedings of Liverpool Singularities-Symposium, I (1969/70). Lecture Notes in Mathematics, vol. 192, pp. 207–253. Springer, Berlin (1971)Google Scholar
  22. 22.
    Marar, W.L., Nuño-Ballesteros, J.J.: The doodle of a finitely determined map germ from \(\mathbb{R}^{2}\) to \(\mathbb{R}^{3}\). Adv. Math. 221(4), 1281–1301 (2009)Google Scholar
  23. 23.
    Martins, R., Nuño-Ballesteros, J.J.: Finitely determined singularities of ruled surfaces in \(\mathbb{R}^{3}\). Math. Proc. Camb. Philos. Soc. 147, 701–733 (2009)Google Scholar
  24. 24.
    Martins, R., Nuño-Ballesteros, J.J.: The link of a ruled frontal surface singularity. Real and Complex Singularities. Contemporary Mathematics, vol. 675, pp. 181–195. American Mathematical Society, Providence (2016)Google Scholar
  25. 25.
    Mendes, R., Nuño-Ballesteros, J.J.: Knots and the topology of singular surfaces in \({\mathbb{R}}^{4}\). Real and Complex Singularities. Contemporary Mathematics, vol. 675, pp. 229–239. American Mathematical Society, Providence (2016)Google Scholar
  26. 26.
    Milnor, J.: Morse theory. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963)Google Scholar
  27. 27.
    Milnor, J.: Singular points of complex hypersurfaces. Annals of Mathematics Studies, vol. 61. Princeton University Press, Princeton (1968)Google Scholar
  28. 28.
    Mond, D.: On the classification of germs of maps from \(\mathbb{R}^2\) to \(\mathbb{R}^3\). Proc. Lond. Math. Soc. 50, 333–369 (1985)Google Scholar
  29. 29.
    Montesinos-Amilibia, A.: SphereXSurface, computer program. http://www.uv.es/montesin
  30. 30.
    Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: The link of finitely determined map germ from \(\mathbb{R}^{2}\) to\(\mathbb{R}^2\). J. Math. Soc. Jpn. 62(4), 1069–1092 (2010)Google Scholar
  31. 31.
    Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: Topological triviality of families of map germs from \(\mathbb{R}^2\) to \(\mathbb{R}^2\). J. Singul. 6, 112–123 (2012)MathSciNetMATHGoogle Scholar
  32. 32.
    Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: Topological classification of corank 1 map germs from \(\mathbb{R}^3\) to \(\mathbb{R}^3\). Rev. Mat. Complut. 27(2), 421–445 (2014)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: Some remarks about the topology of corank 2 map germs from \(\mathbb{R}^2\) to \(\mathbb{R}^2\). J. Singul. 10, 200–224 (2014)MathSciNetMATHGoogle Scholar
  34. 34.
    Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: Gauss words and the topology of map germs from \(\mathbb{R}^3\) to \(\mathbb{R}^3\). Rev. Mat. Iberoam. 31(3), 977–988 (2015)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: Topological triviality of families of map germs from \(\mathbb{R}^3\) to \(\mathbb{R}^3\). Rocky Mountain J. Math. 46(5), 1643–1664 (2016)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement intégrable ou d’une fonction numérique. C. R. Math. Acad. Sci. Paris 222, 847–849 (1946)MATHGoogle Scholar
  37. 37.
    Sharko, V.V.: Smooth and topological equivalence of functions on surfaces. Ukr. Math. J. 55, 832–846 (2003)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Thom, R.: La stabilité topologique des applications polynomiales. Enseign. Math. 8(2), 24–33 (1962)Google Scholar
  39. 39.
    Thom, R.: Local topological properties of differentiable mappings. Colloquium on Differential Analysis (Tata Institute), pp. 191–202. Oxford University Press, Oxford (1964)Google Scholar
  40. 40.
    Wall, C.T.C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13(6), 481–539 (1981)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Wall, C.T.C.: Classification and Stability of Singularities of Smooth Maps Singularity Theory (Trieste, 1991), pp. 920–952. World Scientific Publishing, River Edge (1995)Google Scholar
  42. 42.
    Whitney, H.: The singularities of a smooth \(n\)-manifold in \((2n-1)\)-space. Ann. Math. 45(2), 247–293 (1944)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de Geometria i TopologiaUniversitat de ValènciaBurjassotSpain

Personalised recommendations