Advertisement

Neural Question Generation from Text: A Preliminary Study

  • Qingyu Zhou
  • Nan Yang
  • Furu Wei
  • Chuanqi Tan
  • Hangbo Bao
  • Ming Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10619)

Abstract

Automatic question generation aims to generate questions from a text passage where the generated questions can be answered by certain sub-spans of the given passage. Traditional methods mainly use rigid heuristic rules to transform a sentence into related questions. In this work, we propose to apply the neural encoder-decoder model to generate meaningful and diverse questions from natural language sentences. The encoder reads the input text and the answer position, to produce an answer-aware input representation, which is fed to the decoder to generate an answer focused question. We conduct a preliminary study on neural question generation from text with the SQuAD dataset, and the experiment results show that our method can produce fluent and diverse questions.

References

  1. 1.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Proceedings of 3rd International Conference for Learning Representations, San Diego (2015)Google Scholar
  2. 2.
    Chali, Y., Hasan, S.A.: Towards topic-to-question generation. Comput. Linguist. 41(1), 1–20 (2015)CrossRefGoogle Scholar
  3. 3.
    Chen, D., Manning, C.: A fast and accurate dependency parser using neural networks. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 740–750. Association for Computational Linguistics, October 2014Google Scholar
  4. 4.
    Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1724–1734. Association for Computational Linguistics, October 2014Google Scholar
  5. 5.
    Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971)CrossRefGoogle Scholar
  6. 6.
    Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)Google Scholar
  7. 7.
    Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.: Maxout networks. In: ICML, vol. 3, no. 28, pp. 1319–1327 (2013)Google Scholar
  8. 8.
    Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., Bengio, Y.: Pointing the unknown words. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, Long Papers, vol. 1, pp. 140–149. Association for Computational Linguistics, August 2016Google Scholar
  9. 9.
    Heilman, M.: Automatic factual question generation from text. Ph.D. thesis, Carnegie Mellon University (2011)Google Scholar
  10. 10.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of 3rd International Conference for Learning Representations, San Diego (2015)Google Scholar
  11. 11.
    Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, pp. 1412–1421. Association for Computational Linguistics, September 2015Google Scholar
  12. 12.
    Manning, C.D., Schütze, H., et al.: Foundations of Statistical Natural Language Processing, vol. 999. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  13. 13.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)Google Scholar
  14. 14.
    Nallapati, R., Zhou, B., glar Gulçehre, Ç., Xiang, B.: Abstractive text summarization using sequence-to-sequence RNNs and beyond. In: Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (2016)Google Scholar
  15. 15.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)Google Scholar
  16. 16.
    Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: ICML, vol. 3, no. 28, pp. 1310–1318 (2013)Google Scholar
  17. 17.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)Google Scholar
  18. 18.
    Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)
  19. 19.
    Serban, I.V., García-Durán, A., Gulcehre, C., Ahn, S., Chandar, S., Courville, A., Bengio, Y.: Generating factoid questions with recurrent neural networks: the 30M factoid question-answer corpus. In: Proceedings of ACL 2016, Berlin, Germany, pp. 588–598. Association for Computational Linguistics, August 2016Google Scholar
  20. 20.
    Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Wang, S., Jiang, J.: Machine comprehension using match-LSTM and answer pointer. arXiv preprint arXiv:1608.07905 (2016)

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Qingyu Zhou
    • 1
  • Nan Yang
    • 2
  • Furu Wei
    • 2
  • Chuanqi Tan
    • 3
  • Hangbo Bao
    • 1
  • Ming Zhou
    • 2
  1. 1.Harbin Institute of TechnologyHarbinChina
  2. 2.Microsoft ResearchBeijingChina
  3. 3.Beihang UniversityBeijingChina

Personalised recommendations