Multi-camera Microenvironment to Capture Multi-view Time-Lapse Videos for 3D Analysis of Aging Objects

  • Lintao Guo
  • Hunter Quant
  • Nikolas Lamb
  • Benjamin Lowit
  • Natasha Kholgade Banerjee
  • Sean BanerjeeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10705)


We present a microenvironment of multiple cameras to capture multi-viewpoint time-lapse videos of objects showing spatiotemporal phenomena such as aging. Our microenvironment consists of four synchronized Raspberry Pi v2 cameras triggered by four corresponding Raspberry Pi v3 computers that are controlled by a central computer. We provide a graphical user interface for users to trigger captures and visualize multiple viewpoint videos. We show multiple viewpoint captures for objects such as fruit that depict shape changes due to water volume loss and appearance changes due to enzymatic browning.


Multi-camera Time-lapse Multiple viewpoint Time-varying 



This work was partially supported by the National Science Foundation (NSF) grant #1730183.

Supplementary material

Supplementary material 1 (mp4 37196 KB)


  1. 1.
    de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. ACM Trans. Graph 27(3), 98 (2008)CrossRefGoogle Scholar
  2. 2.
    Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R.W., Gross, M.: High-quality passive facial performance capture using anchor frames. In: SIGGRAPH (2011)Google Scholar
  3. 3.
    Enrique, S., Koudelka, M., Belhumeur, P., Dorsey, J., Nayar, S., Ramamoorthi, R.: Time-varying textures: definition, acquisition, and synthesis. In: SIGGRAPH Sketches (2005)Google Scholar
  4. 4.
    Guo, L., Quant, H., Lamb, N., Lowit, B., Banerjee, S., Banerjee, N.K.: Spatiotemporal 3D models of aging fruit from multi-view time-lapse videos. In: MMM (2018)Google Scholar
  5. 5.
    Langenbucher, T., Merzbach, S., Möller, D., Ochmann, S., Vock, R., Warnecke, W., Zschippig, M.: Time-varying BTFs. In: CESCG (2010)Google Scholar
  6. 6.
    Li, Y., Fan, X., Mitra, N.J., Chamovitz, D., Cohen-Or, D., Chen, B.: Analyzing growing plants from 4D point cloud data. ACM Trans. Graph 32(6), 157 (2013)MathSciNetGoogle Scholar
  7. 7.
    Lu, J., Georghiades, A.S., Glaser, A., Wu, H., Wei, L.Y., Guo, B., Dorsey, J., Rushmeier, H.: Context-aware textures. ACM Trans. Graph 26(1), 3 (2007)CrossRefGoogle Scholar
  8. 8.
    Sun, B., Sunkavalli, K., Ramamoorthi, R., Belhumeur, P.N., Nayar, S.K.: Time-varying BRDFs. TVCG (3), 595–609 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Lintao Guo
    • 1
  • Hunter Quant
    • 1
  • Nikolas Lamb
    • 1
  • Benjamin Lowit
    • 1
  • Natasha Kholgade Banerjee
    • 1
  • Sean Banerjee
    • 1
    Email author
  1. 1.Clarkson UniversityPotsdamUSA

Personalised recommendations