Parity Games and Automata for Game Logic

  • Helle Hvid Hansen
  • Clemens Kupke
  • Johannes Marti
  • Yde Venema
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10669)

Abstract

Parikh’s game logic is a PDL-like fixpoint logic interpreted on monotone neighbourhood frames that represent the strategic power of players in determined two-player games. Game logic translates into a fragment of the monotone \(\mu \)-calculus, which in turn is expressively equivalent to monotone modal automata. Parity games and automata are important tools for dealing with the combinatorial complexity of nested fixpoints in modal fixpoint logics, such as the modal \(\mu \)-calculus. In this paper, we (1) discuss the semantics a of game logic over neighbourhood structures in terms of parity games, and (2) use these games to obtain an automata-theoretic characterisation of the fragment of the monotone \(\mu \)-calculus that corresponds to game logic. Our proof makes extensive use of structures that we call syntax graphs that combine the ease-of-use of syntax trees of formulas with the flexibility and succinctness of automata. They are essentially a graph-based view of the alternating tree automata that were introduced by Wilke in the study of modal \(\mu \)-calculus.

References

  1. 1.
    Berwanger, D.: Game logic is strong enough for parity games. Stud. Logica 75(2), 205–219 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bradfield, J., Stirling, C.: Modal \(\mu \)-calculi. In: Handbook of Modal Logic, pp. 721–756. Elsevier (2006)Google Scholar
  3. 3.
    Carreiro, F., Venema, Y.: PDL inside the \(\mu \)-calculus: a syntactic and an automata-theoretic characterization. In: Goré, R., Kooi, B., Kurucz, A. (eds.) Advances in Modal Logic, vol. 10, pp. 74–93. College Publications (2014)Google Scholar
  4. 4.
    Carreiro, F.: Fragments of fixpoint logics. Ph.D. thesis, University of Amsterdam (2015)Google Scholar
  5. 5.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)CrossRefMATHGoogle Scholar
  6. 6.
    d’Agostino, G., Hollenberg, M.: Logical questions concerning the \(\mu \)-calculus. J. Symbol. Logic 65, 310–332 (2000)CrossRefMATHGoogle Scholar
  7. 7.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs (extended abstract). In: Proceedings of the 29th Symposium on the Foundations of Computer Science, pp. 328–337. IEEE Computer Society Press (1988)Google Scholar
  8. 8.
    Emerson, E.A., Jutla, C.S., Sistla, P.: On model checking for the \(\mu \)-calculus and its fragments. Theor. Comput. Sci. 258, 491–522 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science (FoCS 1991), pp. 368–377. IEEE (1991)Google Scholar
  10. 10.
    Enqvist, S., Seifan, F., Venema, Y.: Completeness for \(\mu \)-calculi: a coalgebraic approach. Technical rep. PP-2017-04, ILLC, Universiteit van Amsterdam (2017)Google Scholar
  11. 11.
    Fontaine, G., Leal, R., Venema, Y.: Automata for coalgebras: an approach using predicate liftings. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 381–392. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14162-1_32 CrossRefGoogle Scholar
  12. 12.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36387-4 MATHGoogle Scholar
  13. 13.
    Hansen, H.H.: Monotonic modal logic. Master’s thesis, University of Amsterdam (2003). iLLC Preprint PP-2003-24Google Scholar
  14. 14.
    Hansen, H.H., Kupke, C.: Weak completeness of coalgebraic dynamic logics. In: Fixed Points in Computer Science (FICS). EPTCS, vol. 191, pp. 90–104 (2015)Google Scholar
  15. 15.
    Hansen, H., Kupke, C., Marti, J., Venema, Y.: Parity games and automata for game logic (extended version) (2017). http://www.arxiv.org
  16. 16.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)MATHGoogle Scholar
  17. 17.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  18. 18.
    Janin, D., Walukiewicz, I.: Automata for the modal \(\mu \)-calculus and related results. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60246-1_160 CrossRefGoogle Scholar
  19. 19.
    Kirsten, D.: Alternating tree automata and parity games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp. 153–167. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36387-4_9 CrossRefGoogle Scholar
  20. 20.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27, 333–354 (1983)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Madeira, A., Neves, R., Martins, M.: An exercise on the generation of many-valued dynamic logics. J. Logic Algebraic Method Program. 85(5), 1011–1037 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mostowski, A.: Games with forbidden positions. Technical rep. 78, Instytut Matematyki, Uniwersytet Gdański, Poland (1991)Google Scholar
  23. 23.
    Parikh, R.: The logic of games and its applications. In: Topics in the Theory of Computation. Annals of Discrete Mathematics, vol. 14. Elsevier (1985)Google Scholar
  24. 24.
    Pauly, M.: Logic for social software. Ph.D. thesis, University of Amsterdam (2001)Google Scholar
  25. 25.
    Pauly, M., Parikh, R.: Game logic: an overview. Stud. Logica 75(2), 165–182 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Venema, Y.: Lectures on the modal \(\mu \)-calculus (2012). https://staff.science.uva.nl/y.venema/
  27. 27.
    Walukiewicz, I.: On completeness of the mu-calculus. In: Proceedings of the Eighth Annual Symposium on Logic in Computer Science (LICS 1993), pp. 136–146. IEEE Computer Society (1993)Google Scholar
  28. 28.
    Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional \(\mu \)-calculus. Inf. Comput. 157(1–2), 142–182 (2000). LICS 1995. San Diego, CAMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wilke, T.: Alternating tree automata, parity games, and modal \(\mu \)-calculus. Bull. Belg. Math. Soc. 8, 359–391 (2001)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Helle Hvid Hansen
    • 1
  • Clemens Kupke
    • 2
  • Johannes Marti
    • 2
  • Yde Venema
    • 3
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.University of StrathclydeGlasgowUK
  3. 3.University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations