Sepsis Management: Importance of the Pathogen

Chapter

Abstract

The nature of the pathogen responsible for initiating the septic process has a major impact on the host: pathogen interaction and the ultimate outcome for the patient. Potential pathogens must first evade an impressive array of innate and adaptive host defense mechanisms to invade and disseminate within a previously healthy human. Such a pathogen-derived pathophysiologic feat is only possible if the invasive microorganism expresses an array of virulence factors capable of overwhelming the host. However, considerably less virulent microorganisms can still successfully disseminate within patients who manifest a number of immune defects and comorbid conditions which functionally impair antimicrobial defenses and disrupt microbial clearance capacities. Pathogens can injure the host by at least three different mechanisms: (1) rapidly replicate and overwhelm the host by an uncontrolled microbial burden or load of organisms, (2) express toxins that directly or indirectly induce cellular injury, or (3) induce collateral damage to normal host tissues through generation of an excessive and damaging host inflammatory response to the presence of pathogen-associated molecular pattern (PAMP) substances. In this chapter we will examine these mechanisms in detail and emphasize the need to rapidly initiate antimicrobial therapies with antibiotics and source control strategies to limit pathogen damage in septic patients. Treatment has become much more difficult by the spread of antibiotic resistance genes among bacterial as well as viral, fungal, and even protozoan pathogens that can cause sepsis.

Keywords

Sepsis Septic shock Toxic shock syndrome Bacteremia Bloodstream infections Virulence factors Microbial toxins Pathogen-associated molecular patterns Endotoxin Antibiotic resistance 

References

  1. 1.
    Singer M, Deutschman CS, Seymour CW, Shankar Hari M, Angus DC, Annane D, et al. The third international consensus definitions for sepsis and septic shock. J Am Med Assoc. 2016;315(8):801–10.Google Scholar
  2. 2.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.Google Scholar
  3. 3.
    Kumar A, Paladugu B, Haery C, Kumar A, Symeoneides A, Taiberg L, et al. Timing of antibiotic administration in relation to duration of shock is a critical determinant of survival in a murine model of E. coli sepsis: association with serum lactate and inflammatory cytokines. J Infect Dis. 2006;193:251–8.Google Scholar
  4. 4.
    Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376:2235–44.  https://doi.org/10.1056/NEJMoa1703058.CrossRefGoogle Scholar
  5. 5.
    Cohen J, Vincent J-L, Adhikari FR, Machado F, Angus D, Calandra T, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15:581–614.Google Scholar
  6. 6.
    Kumar A. An alternate pathophysiologic paradigm of sepsis and septic shock: implications for optimizing antimicrobial therapy. Virulence. 2014;5(1):80–97.PubMedGoogle Scholar
  7. 7.
    Sullivan FL, Neckermann EF, Cannon PR. The localization and fate of bacteria in the tissues. J Immunol. 1934;26:46–67.Google Scholar
  8. 8.
    Ottenberg R. The rate and location of removal of bacteria from the blood in human disease. Arch Pathol. 1931;11:766–74.Google Scholar
  9. 9.
    Opal SM, Cross AS, Gemski PK. Antigen and its effect on serum sensitivity of rough E. coli. Infect Immun. 1982;37(3):956–60.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Miajlovic H, Smith S. Bacterial self-defence: how Escherichia coli evades serum killing. FEMS Microbiol Lett. 2014;354:1–9.PubMedGoogle Scholar
  11. 11.
    Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343:227–35.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Opal SM. Splenectomy and splenic dysfunction. In: Cohen J, Powderly W, Opal SM, editors. Infectious diseases. 4th ed. Edinburgh: Mosby, Times-Mirror International Publishers; 2016. p. 775–9.Google Scholar
  13. 13.
    Opal SM, Pop-Vicas A. Molecular mechanisms of antibiotic resistance in bacteria. In: Bennett JE, Dolin R, Blaser M, editors. Principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2014. p. 235–51.Google Scholar
  14. 14.
    Van der Poll T, Opal SM. The molecular pathogenesis of pneumococcal pneumonia. Lancet. 2009;374:1543–56.PubMedGoogle Scholar
  15. 15.
    Hacker J, Carniel E. Ecologic fitness, genomic islands and bacterial pathogenicity: a Darwinian view of evolution in microbes. EMBO Rep. 2001;2(5):371–81.Google Scholar
  16. 16.
    Finlay BB, Falkow S. Common themes in microbial pathogenicity revised. Microbiol Mol Biol Rev. 1997;61:136–69.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Rao AN, Barlow M, Clark LA, Boring JR, Tenover FC, McGowan JE. Class 1 integron in resistant Escherichia coli and Klebsiella spp. in US hospitals. Emerg Infect Dis. 2006;12(6):1011–4.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio. 2017;8(3):e00543-17.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dellinger RP, Tomayko JF, Angus DC, Opal SM, Cupo MA, McDermott S, et al. Efficacy and safety of a phospholipid emulsion (GR270773) in gram-negative severe sepsis: results of a phase II multicenter, randomized, placebo-controlled, dose-finding clinical trial. Crit Care Med. 2009;37(11):2929–38.PubMedGoogle Scholar
  20. 20.
    Tidswell M, Tillis W, LaRosa SP, Lynn M, Wittek AE, Kao R, et al. Phase 2 trial of eritoran tetrasodium (E5564), a Toll-like receptor 4 antagonist, in patients with severe sepsis. Crit Care Med. 2010;38(1):72–83.PubMedGoogle Scholar
  21. 21.
    Wunderink RG, Laterre PF, Francois B, Perrotin D, Artigas A, Vidal LO, et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia. Am J Respir Crit Care Med. 2011;183:1561–8.Google Scholar
  22. 22.
    Abraham E, Reinhart K, Opal SM, Demeyer I, Doig C, Rodriguez AL, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis. JAMA. 2003;290(2):238–47.Google Scholar
  23. 23.
    Opal SM, Lim YP, Siryaporn E, Moldawer L, Pribble J, Palardy J, et al. Longitudinal studies of inter-alpha inhibitor proteins in severely septic patients: a potential clinical marker and mediator of severe sepsis. Crit Care Med. 2007;35(2):387–92.PubMedGoogle Scholar
  24. 24.
    Opal SM, Laterre PF, Francois B, LaRosa SP, Angus D, Mira JP, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis. JAMA. 2013;309(11):1154–62.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Opal SM, Garber G, LaRosa SP, Maki D, Freebairn R, Kinasewitz G, et al. Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa (activated). Clin Infect Dis. 2003;37:50–8.Google Scholar
  26. 26.
    Schuster D, Metzler M, Opal S, Lowry S, Balk R, Abraham E, et al. Recombinant platelet-activating factor acetylhydrolase to prevent acute respiratory distress syndrome and mortality in severe sepsis: phase IIb, multicenter, randomized, placebo-controlled, clinical trial. Crit Care Med. 2003;31(6):1612–9.PubMedGoogle Scholar
  27. 27.
    Opal S, Scannon P, Vincent JL, White M, Carroll S, Palardy JE, et al. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe and septic shock. J Infect Dis. 1999;180:1584–9.PubMedGoogle Scholar
  28. 28.
    Fisher CJ, Dhainaut J-F, Opal SM, Pribble JP, Balk RA, Slotman GJ, et al. Recombinant human interleukin-1 receptor antagonist reduces the mortality of patients with sepsis syndrome as a function of disease severity: a randomized, double-blind, placebo controlled trial. JAMA. 1994;271:1836–43.PubMedGoogle Scholar
  29. 29.
    Warren B, Eid A, Singer P, Pillay SS, Carl P, Novak I, et al. High-dose antithrombin III in severe sepsis. JAMA. 2001;286(15):1869–78.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Opal SM, Laterre PF, Abraham E, Francois B, Wittebole X, Lowry S, et al. Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double-blinded, placebo-controlled, clinical trial. Crit Care Med. 2004;32(2):332–41.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Fisher CJ, Agosti J, Opal SM, Lowry S, Balk R, Sadoff J, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. N Engl J Med. 1996;334:1697–702.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Vincent J-L, Breasley D, Libert N, Abidi NE, O’Dwyer M, Zackarowski K, et al. Rapid diagnosis of infection in the critically ill, a multicenter study of molecular detection of bloodstream infections, pneumonia and sterile site infections. Crit Care Med. 2015;43(11):2285–93.Google Scholar
  33. 33.
    Jordana-Lluch E, Gimenez M, Quesada MD, Rivaya B, Marco C, Dominguez MJ, et al. Evaluation of the broad-range PCR/ESI-MS technology of in blood specimens for the molecular diagnosis of bloodstream infections. PLoS One. 2015;10(10):e0140865.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Asad S, Opal SM. Quorum sensing and the role of cell to cell communication in the pathogenesis of invasive infection. Crit Care. 2008;12(6):236–45.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Walters M, Sperandio V. Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol. 2006;296(2–3):125–31.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Van der Poll T, Opal SM. Host-pathogen interactions in sepsis. Lancet Infect Dis. 2008;8:32–43.Google Scholar
  38. 38.
    Mora-Rillo M, Fernandez-Romero N, Francisco N-S, Diez-Sebastian J, Romero-Gomez MP, Fernandez FA, et al. Impact of virulence genes on sepsis severity and survival in Escherichia coli bacteremia. Virulence. 2015;6(1):93–100.  https://doi.org/10.4161/21505594.2014.991234.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–61.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Johnson J, Murray A, Kuskowski M, Schubert S, Prere M, Picard B, et al. Distribution and characteristics of clonal group A. Emerg Infect Dis. 2005;11(1):141–294.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Miajlovic H, MacAogain M, Collins C, Rogers T, Smith S. Characterization of Escherichia coli bloodstream isolates associated with mortality. J Med Microbiol. 2016;65:71–9.PubMedGoogle Scholar
  42. 42.
    Skjot-Rasmussen L, Ejrnaes K, Lundgren B, Hammerum AM, Frimodt-Moller N. Virulence factors and phylogenetic grouping of Escherichia coli isolates from patients with bacteraemia of urinary tract origin relate to sex and hospital vs. community-acquired origin. Int J Med Microbiol. 2012;302(3):129–34.PubMedGoogle Scholar
  43. 43.
    Cooke N, Smith S, Kelleher M, Rogers T. Major differences exist in frequencies of virulence factors and multidrug resistance between community and nosocomial Escherichia coli bloodstream isolates. J Clin Microbiol. 2010;48(4):1099–104.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang M, Tseng C, Chen C, Wu J, Huang J. The role of bacterial virulence and host factors in patients with Escherichia coli bacteria who have acute cholangitis or upper urinary tract infection. Clin Infect Dis. 2002;35(15):1161–6.PubMedGoogle Scholar
  45. 45.
    Johnson J, Porter S, Johnston B, Thuras P, Clock S, Crupain M, et al. Extraintestinal pathogenic and antimicrobial resistant Escherichia coli, including sequence type 131 (ST131), from retail chicken breasts: United States, 2013. Appl Environ Microbiol. 2017.  https://doi.org/10.1128/AEM.02956-16.
  46. 46.
    Johnson JR, Johnston B, Clabots C, Kushowski MA, Castanheira M. Escherichia coli sequence type 131 as the major cause of serious multidrug resistant E. coli infections in the United States. Clin Infect Dis. 2010;51(3):286–94.PubMedGoogle Scholar
  47. 47.
    van der Mee-Marquet NL, Blanc DS, Gbaguidi-Haore H, Dos Santos Borgess S, Viboud Q, Bertrand X. Marked increase in incidence for bloodstream infections due to Escherichia coli, a side effect of previous antibiotic therapy in the elderly. Front Microbiol. 2015;6:646–55.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Anderson D, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260–71.Google Scholar
  49. 49.
    Beceiro A, Tomas M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26(2):185–230.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Geisinger E, Isberg R. Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis. 2017;215(1):S9–S17.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Gomez-Simmonds A, Uhlemann A-C. Clinical implications of genomic adaptation and evolution of carbapenem-resistant Klebsiella pneumoniae. J Infect Dis. 2017;215(1):S18–26.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, antibiotic resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015:E3574–81.  https://doi.org/10.1073/pnas.1501049112.
  53. 53.
    VL Y, Hansen DS, Ko WC, Sagnimeni A, Klugman KP, von Gottberg A, et al. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis. 2007;13(7):986–93.Google Scholar
  54. 54.
    Logan L, Weinstein R. The epidemiology of carbapenem-resistant enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(1):S28–36.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Nassif X, Fournier J-M, Arondel J, Sansonetti PJ. Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun. 1989;57(2):546–52.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Decré D, Verdet C, Emirian A, Le Gourrierec T, Petit J-C, Offenstadt G, et al. Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in France. J Clin Microbiol. 2011;49(8):3012–4.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Fung C-P, Chang F-Y, Lee S-C, B-S H, Kuo BI-T, Liu C-Y, et al. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut. 2002;50:420–4.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Nadasy K, Domiati-Saad R, Tribble MA. Invasive Klebsiella pneumoniae syndrome in North America. Clin Infect Dis. 2007;45:e25–8.PubMedGoogle Scholar
  59. 59.
    Bilal S, Volz MS, Fiedler T, Podschun R, Schneider T. Klebsiella pneumoniae-induced liver abscesses, Germany. Emerg Infect Dis. 2014;20(11):1939–40.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Juan C, Pena C, Oliver A. Host and pathogen biomarkers for severe Pseudomonas aeruginosa infections. J Infect Dis. 2017;215(1):S44–50.PubMedGoogle Scholar
  61. 61.
    Bleves S, Viarre V, Salacha R, Michel Gerard PF, Filloux A, Voulhoux R. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol. 2010:534–43.  https://doi.org/10.1016/j.ijmm.2010.8.005.PubMedGoogle Scholar
  62. 62.
    Hauser A. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol. 2009;7:654–65.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Fronzes R, Christie PJ, Waksman G. The structural biology of type IV secretion systems. Nat Rev Microbiol. 2009;7:703–14.PubMedGoogle Scholar
  64. 64.
    Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 2006;9:207–17.PubMedGoogle Scholar
  65. 65.
    Russell A, Petterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 2014;12:137–48.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Bingle LEH, Bailey CM, Pallen MJ. Type VI secretion: a beginner’s guide. Curr Opin Microbiol. 2008;11:3–8.PubMedGoogle Scholar
  67. 67.
    Cascales E, Cambillau C. Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci. 2012;367:1102–11.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Pukatzki S, McAuley SB, Miyata ST. The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol. 2009;12:11–7.PubMedGoogle Scholar
  69. 69.
    Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbrouchke-Grauls CMJE, Luirink J, et al. General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A. 2012;109(28):11342–7.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Simone R, Bottai D, Brosch R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol. 2009;12(1):4–10.Google Scholar
  71. 71.
    Artero A, Zaragoza R, Camarena JJ, Sancho S, González R, Nogueira JM. Prognostic factors of mortality in patients with community-acquired bloodstream infection with severe sepsis and septic shock. J Crit Care. 2010;25(2):276–81.PubMedGoogle Scholar
  72. 72.
    Zahar JR, Timsit JF, Garrouste-Orgeas M, Français A, Vesin A, Descorps-Declere A, et al. Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality. Crit Care Med. 2011;39(8):1886–95.PubMedGoogle Scholar
  73. 73.
    Puskarich MA, Trzeciak S, Shapiro NI, Arnold RC, Horton JM, Studnek JR, Kline JA, Jones AE, Emergency Medicine Shock Research Network (EMSHOCKNET). Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med. 2011;39(9):2066–71.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci. 2010;67(18):3057–71.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Novick RP. Staphylococcal pathogenesis and pathogenicity factors: genetics and regulation. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI, editors. Gram-positive pathogens. Washington, DC: ASM Press; 2006. p. 496–516.Google Scholar
  76. 76.
    von Eiff C, Taylor KL, Mellmann A, Fattom AI, Friedrich AW, Peters G, Becker K. Distribution of capsular and surface polysaccharide serotypes of Staphylococcus aureus. Diagn Microbiol Infect Dis. 2007;58:297–302.Google Scholar
  77. 77.
    Arbeit RD, Karakawa WW, Vann WF, Robbins JB. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect Dis. 1984;2:85–91.PubMedGoogle Scholar
  78. 78.
    O’Riordan K, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev. 2004;17(1):218–34.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Shinefield H, Black S, Fattom A, Horwith G, Rasgon S, Ordonez J, et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med. 2002;346(7):491–6.PubMedGoogle Scholar
  80. 80.
    Jenkins A, Diep BA, Mai TT, Vo NH, Warrener P, Suzich J, et al. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. MBio. 2015;6(1):e02272-14. Gilmore MS, editorPubMedPubMedCentralGoogle Scholar
  81. 81.
    Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host-pathogen interactions. Adv Appl Microbiol. 2016;96:1–41.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Falugi F, Kim HK, Missiakas DM, Schneewind O. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. MBio. 2013;4(5):e00575-13.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bicomponent leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol. 2012;2:12.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Guillet V, Roblin P, Werner S, Coraiola M, Menestrina G, Monteil H, et al. Crystal structure of leucotoxin S component: new insight into the Staphylococcal beta-barrel pore-forming toxins. J Biol Chem. 2004;279(39):41028–37. Epub 2004 Jul 18PubMedGoogle Scholar
  85. 85.
    Bukowski M, Wladyka B, Dubin G. Exfoliative toxins of Staphylococcus aureus. Toxins. 2010;2(5):1148–65.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Pinchuk IV, Beswick EJ, Reyes VE. Staphylococcal enterotoxins. Toxins. 2010;2(8):2177–97.  https://doi.org/10.3390/toxins2082177.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science. 2003;302(5650):1569–71.PubMedGoogle Scholar
  88. 88.
    Zhu W, Clark N, Patel JB. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureus in vitro. Antimicrob Agents Chemother. 2013;57(1):212–9.  https://doi.org/10.1128/AAC.01587-12. Epub 2012 Oct 22CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Hanssen AM, Ericson Sollid JU. SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol. 2006;46(1):8–20.PubMedGoogle Scholar
  90. 90.
    Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev. 2015;28(3):871–99.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Griffin MR, Zhu Y, Moore MR, Whitney CG, Grijalva CG. U.S. hospitalizations for pneumonia after a decade of pneumococcal vaccination. N Engl J Med. 2013;369(2):155–63.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Keller LE, Robinson DA, McDaniel LS. Nonencapsulated Streptococcus pneumoniae: emergence and pathogenesis. MBio. 2016;7(2):e01792.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Brown AO, Mann B, Gao G, Hankins JS, Humann J, Giardina J, et al. Streptococcus pneumoniae translocates into the myocardium and forms unique microlesions that disrupt cardiac function. PLoS Pathog. 2014;10(9):e1004383.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Bandara M, Skehel JM, Kadioglu A, Collinson I, Nobbs AH, Blocker AJ, et al. The accessory Sec system (SecY2A2) in Streptococcus pneumoniae is involved in export of pneumolysin toxin, adhesion and biofilm formation. Microbes Infect. 2017;19(7–8):402–12.  https://doi.org/10.1016/j.micinf.2017.04.003. Epub 2017 Apr 27CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Mohan S, Hertweck C, Dudda A, et al. Tuf of Streptococcus pneumoniae is a surface displayed human complement regulator binding protein. Mol Immunol. 2014;62(1):249–64.PubMedGoogle Scholar
  96. 96.
    Rai AN, Thornton JA, Stokes J, et al. Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia. Sci Rep. 2016;6:26964.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, et al. Disease manifestations and pathogenic mechanisms of Group A streptococcus. Clin Microbiol Rev. 2014;27(2):264–301.  https://doi.org/10.1128/CMR.00101-13.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Barnett TC, Scott JR. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol. 2002;184(8):2181–91.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Rezcallah MS, Hodges K, Gill DB, Atkinson JP, Wang B, Cleary PP. Engagement of CD46 and alpha5beta1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell Microbiol. 2005;7(5):645–53.PubMedGoogle Scholar
  100. 100.
    Abbot EL, Smith WD, Siou GP, Chiriboga C, Smith RJ, Wilson JA, et al. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol. 2007;9(7):1822–33.PubMedGoogle Scholar
  101. 101.
    Honda-Ogawa M, Ogawa T, Terao Y, Sumitomo T, Nakata M, Ikebe K, et al. Cysteine proteinase from Streptococcus pyogenes enables evasion of innate immunity via degradation of complement factors. J Biol Chem. 2013;288(22):15854–64.  https://doi.org/10.1074/jbc.M113.469106. Epub 2013 Apr 15CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Collin M, Olsén A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J. 2001;20(12):3046–55.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Egesten A, Olin AI, Linge HM, Yadav M, Mörgelin M, Karlsson A, et al. SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One. 2009;4(3):e4769.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Herwald H, Cramer H, Mörgelin M, Russell W, Sollenberg U, Norrby-Teglund A, et al. M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell. 2004;116(3):367–79.PubMedGoogle Scholar
  105. 105.
    Chandrahas V, Glinton K, Liang Z, Donahue DL, Ploplis VA, Castellino FJ. Direct host plasminogen binding to bacterial surface M-protein in pattern D strains of Streptococcus pyogenes is required for activation by its natural co-inherited SK2b protein. J Biol Chem. 2015;290(30):18833–42.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Sumitomo T, Nakata M, Higashino M, Jin Y, Terao Y, Fujinaga Y, Kawabata S. Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier. J Biol Chem. 2011;286(4):2750–61.PubMedGoogle Scholar
  107. 107.
    Hryniewicz W, Pryjma J. Effect of streptolysin S on human and mouse T and B lymphocytes. Infect Immun. 1977;16(3):730–3.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Uchiyama S, Döhrmann S, Timmer AM, Dixit N, Ghochani M, Bhandari T, et al. Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to Group A Streptococcus. Front Immunol. 2015;6:581.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Björck L. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem. 2003;278(19):16561–6. Epub 2003 Mar 5PubMedGoogle Scholar
  110. 110.
    Uchiyama S, Andreoni F, Schuepbach RA, Nizet V, Zinkernagel AS. DNase Sda1 allows invasive M1T1 Group A streptococcus to prevent TLR9-dependent recognition. PLoS Pathog. 2012;8(6):e1002736.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014;27(1):21–47.  https://doi.org/10.1128/CMR.00031-13.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Jackson LA, Hilsdon R, Farley MM, Harrison LH, Reingold AL, Plikaytis BD, et al. Risk factors for group B streptococcal disease in adults. Ann Intern Med. 1995;123(6):415–20.PubMedGoogle Scholar
  113. 113.
    Landwehr-Kenzel S, Henneke P. Interaction of Streptococcus agalactiae and cellular innate immunity in colonization and disease. Front Immunol. 2014;5:519.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Jacobsson K. A novel family of fibrinogen-binding proteins in Streptococcus agalactiae. Vet Microbiol. 2003;96(1):103–13.PubMedGoogle Scholar
  115. 115.
    Lauer P, Rinaudo CD, Soriani M, Margarit I, Maione D, Rosini R, et al. Genome analysis reveals pili in Group B streptococcus. Science. 2005;309(5731):105.PubMedGoogle Scholar
  116. 116.
    Konto-Ghiorghi Y, Mairey E, Mallet A, Duménil G, Caliot E, Trieu-Cuot P, et al. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathog. 2009;5(5):e1000422.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Tazi A, Disson O, Bellais S, Bouaboud A, Dmytruk N, Dramsi S, et al. The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. J Exp Med. 2010;207(11):2313–22.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Bolduc GR, Madoff LC. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells. Microbiology. 2007;153(Pt 12):4039–49.PubMedGoogle Scholar
  119. 119.
    Doran KS, Chang JC, Benoit VM, Eckmann L, Nizet V. Group B streptococcal beta-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J Infect Dis. 2002;185(2):196–203.PubMedGoogle Scholar
  120. 120.
    Hensler ME, Quach D, Hsieh C-J, Doran KS, Nizet V. CAMP factor is not essential for systemic virulence of group B streptococcus. Microb Pathog. 2008;44(1):84–8.PubMedGoogle Scholar
  121. 121.
    Chen VL, Avci FY, Kasper DL. A maternal vaccine against group B streptococcus: past, present, and future. Vaccine. 2013;31(Suppl 4):D13–9.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Jarva H, Hellwage J, Jokiranta TS, Lehtinen MJ, Zipfel PF, Meri S. The group B streptococcal beta and pneumococcal Hic proteins are structurally related immune evasion molecules that bind the complement inhibitor factor H in an analogous fashion. J Immunol. 2004;172(5):3111–8.PubMedGoogle Scholar
  123. 123.
    Santi I, Scarselli M, Mariani M, Pezzicoli A, Masignani V, Taddei A, et al. BibA: a novel immunogenic bacterial adhesin contributing to group B streptococcus survival in human blood. Mol Microbiol. 2007;63(3):754–67.PubMedGoogle Scholar
  124. 124.
    Henneke P, Dramsi S, Mancuso G, Chraibi K, Pellegrini E, Theilacker C, et al. Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol. 2008;180(9):6149–58.PubMedGoogle Scholar
  125. 125.
    Charrel-Dennis M, Latz E, Halmen KA, Trieu-Cuot P, Fitzgerald KA, Kasper DL, et al. TLR-independent type I interferon induction in response to an extracellular bacterial pathogen via intracellular recognition of its DNA. Cell Host Microbe. 2008;4(6):543–54.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Gupta R, Ghosh S, Monks B, DeOliveira RB, Tzeng TC, Kalantari P, et al. RNA and β-hemolysin of group B streptococcus induce interleukin-1β (IL-1β) by activating NLRP3 inflammasomes in mouse macrophages. J Biol Chem. 2014;289(20):13701–5.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26(3):422–47.  https://doi.org/10.1128/CMR.00104-12.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol. 2001;55:77–104.PubMedGoogle Scholar
  129. 129.
    Li H, Llera A, Malchiodi EL, Mariuzza RA. The structural basis of T cell activation by superantigens. Annu Rev Immunol. 1999;17:435–66.PubMedGoogle Scholar
  130. 130.
    Dinges MM, Schlievert PM. Comparative analysis of lipopolysaccharide-induced tumor necrosis factor alpha activity in serum and lethality in mice and rabbits pretreated with the staphylococcal superantigen toxic shock syndrome toxin 1. Infect Immun. 2001;69(11):7169–72.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Shands KN, Schmid GP, Dan BB, Blum D, Guidotti RJ, Hargrett NT, et al. Toxic-shock syndrome in menstruating women: association with tampon use and Staphylococcus aureus and clinical features in 52 cases. N Engl J Med. 1980;303(25):1436–42.PubMedGoogle Scholar
  132. 132.
    Davies HD, McGeer A, Schwartz B, Green K, Cann D, Simor AE, et al. Invasive group A streptococcal infections in Ontario, Canada. Ontario Group A streptococcal study group. N Engl J Med. 1996;335(8):547–54.PubMedGoogle Scholar
  133. 133.
    Stevens DL, Ma Y, Salmi DB, McIndoo E, Wallace RJ, Bryant AE. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Infect Dis. 2007;195(2):202–11.PubMedGoogle Scholar
  134. 134.
    Kaul R, McGeer A, Norrby-Teglund A, Kotb M, Schwartz B, O'Rourke K, et al. Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome—a comparative observational study. The Canadian Streptococcal Study Group. Clin Infect Dis. 1999;28(4):800–7.PubMedGoogle Scholar
  135. 135.
    Inskeep TK, Stahl C, Odle J, Oakes J, Hudson L, Bost KL, et al. Oral vaccine formulations stimulate mucosal and systemic antibody responses against staphylococcal enterotoxin B in a piglet model. Clin Vaccine Immunol. 2010;17(8):1163–9.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Labbe AC, Pepin J, Patino C, Castonguar S, Restieri C, Laverdiere M. A single-centre 10-year experience with Candida bloodstream infections. Can J Infect Dis Med Microbiol. 2009;20:45–50.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, et al. Epidemiology and outcomes of candidemia in 3648 patients: data from the prospective antifungal therapy (PATH Alliance®) registry, 2004–2008. Diagn Microbiol Infect Dis. 2012;74(4):323–31.PubMedGoogle Scholar
  138. 138.
    Vallabhaneni S, Kallen A, Tsay S, Chow N, Welsh R, Kerins J, et al. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus—United States, May 2013–August 2016. MMWR Morb Mortal Wkly Rep. 2016;65(44):1234–7.PubMedGoogle Scholar
  139. 139.
    Skrobik Y, Laverdiere M. Why candida sepsis should matter to ICU physicians. Crit Care Clin. 2013;29(4):853–64.PubMedGoogle Scholar
  140. 140.
    De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46:1813–21.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Nguyen MH, Wissel MC, Shields RK, Salomoni MA, Hao B, Press EG, et al. Performance of Candida real-time polymerase chain reaction, beta-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin Infect Dis. 2012;54:1240–8.PubMedGoogle Scholar
  142. 142.
    Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005;49:3640–5.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A, et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J Clin Microbiol. 2015;53(6):1823–30.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Kumar A, Skrobik I, Guzman J, Lapinsky S, Llaupland K, CATSS Database Research Group. The high mortality of candida septic shock is explained by excessive delays in initiation of antifungal therapy. Poster K-2174, 47th ICAAC, Chicago, IL; 2007.Google Scholar
  145. 145.
    Green E, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr. 2016;4(1):1–32.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Infectious DiseasesUniversity of Missouri-Kansas CityKansas CityUSA
  2. 2.Ocean State Clinical Coordinating Center of Rhode Island HospitalProvidenceUSA
  3. 3.Infectious Disease DivisionAlpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations